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Abstract

On a foliated Riemannian manifold with a Kähler spin foliation, we give a lower bound for the
square of the eigenvalues of the transversal Dirac operator. We prove, in the limiting case, that
the foliation is a minimal, transversally Einsteinian of odd complex dimension with nonnegative
constant transversal scalar curvature.
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1. Introduction

On a foliated Riemannian manifold(M, gM,F) with a transverse spin structure, it was
shown by Jung[3] that for any eigenvalueλ of the transversal Dirac operatorDtr, the
estimation

λ2 ≥ q

4(q − 1)
K0
σ (1.1)

holds, whereq = codimF, K0
σ = min(σ∇ + |κ|2) (≥ 0). Hereσ∇ is a transversal scalar

curvature andκ is the mean curvature form ofF. In the limiting case, the foliation is a
minimal transversally Einsteinian with constant transversal scalar curvature. The essential
point in the proof of(1.1)was the introduction of a modified connection of the form

∇f
Xφ = ∇Xφ + fπ(X) · φ,
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wheref is a real valued basic function andπ : TM → Q is a projection from the tangent
bundle onto the normal bundleQ (seeSection 2). In the case that the equality in(1.1)holds,
the eigenspinorφ1 corresponding to the first eigenvalueλ1 with λ2

1 = (q/4(q − 1))K0
σ is

a transversal Killing spinor, i.e.,∇f1
X φ = 0, f1 = λ1/q and the foliationF is minimal.

Hence we can prove that the equality in(1.1)on the Kähler spin foliation ofq 
= 2 is not
possible. Namely, if one takes the basic 2-formΩ as an endomorphism of the foliated spinor
bundle, then sinceF is minimal, one obtains the equation

Dtr(Ωφ1) = q − 4

q
λ1Ωφ1. (1.2)

Since the number((q − 4)/q)λ1 cannot be an eigenvalue ofDtr for q 
= 2, (1.2) implies
Ωφ = 0. Hence by straight calculation, it can be shown thatDtrφ1 = λ1φ1 andΩφ1 = 0
imply φ1 = 0, which implies that in the Kähler spin foliation, the equality in(1.1)does not
hold. Hence we obtain a better lower bound for the eigenvalues ofDtr than the one in(1.1).
Namely, we prove the following theorem.

Main Theorem. Let (M, gM,F) be a compact Riemannian manifold with a Kähler spin
foliationF of codimensionq = 2n and a bundle-like metricgM with κ ∈ Ω1

B(F). Assume
that the mean curvatureκ of F satisfiesδκ = 0 and transversally holomorphic. IfKσ =
σ∇ + |κ|2 ≥ 0, then the eigenvalueλ ofDtr satisfies

λ2 ≥ q + 2

4q
K0
σ , (1.3)

whereK0
σ = minKσ . If (1/2)

√
((q + 2)/q)K0

σ itself is an eigenvalue ofDtr, then the
Kähler foliationF is a minimal, transversally Einsteinian of odd complex dimensionnwith
nonnegative constant transversal scalar curvatureσ∇ .

Main Theorem is a generalization of the one on an ordinary Kähler spin manifold by
Kirchberg[5]. Namely, on the closed Kähler spin manifoldM2n with positive scalar cur-
vatureR, the eigenvaluesλ of the Dirac operatorD satisfies the following:

λ2 ≥ m+ 2

4m
R0, m = 2n, (1.4)

whereR0 = minR. In the limiting case, the manifold is an Einstein of odd complex
dimensionm.

This paper is organized as follows. InSection 2, we give the definition of a Kähler
foliation. InSection 3, we review the transversal spin structure on the Riemannian foliation
and modify many properties of Kirchberg’s paper[5] for foliation. In Section 4, we study
some basic properties of the transversal Dirac operator. InSection 5, we give a lower bound
for the square of the eigenvalues of the transversal Dirac operator. InSection 6, we prove, in
the limiting case, that the foliation is a minimal, transversally Einsteinian of odd complex
dimension with nonnegative constant transversal scalar curvature.

This paper is based on[5]. Since the techniques are similar to those in[5], we omit
proofs of many equations except for equations related to the mean curvature formκ of the
foliationF.
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2. Kähler foliation

Let (M, gM,F) be a(p + q)-dimensional Riemannian manifold with a foliationF of
codimensionq and a bundle-like metricgM with respect toF.

We recall the exact sequence

0 → L → TM
π→Q → 0

determined by the tangent bundleL and the normal bundleQ of F. The assumption ofgM
to be a bundle-like metric means that the induced metricgQ on the normal bundleQ ∼= L⊥
satisfies the holonomy invariance conditionθ(X)gQ = 0 for all X ∈ Γ L, whereθ(X)
denotes the Lie derivative with respect toX.

For a distinguished chartU ⊂ M the leaves ofF in U are given as the fibers of a
Riemannian submersionf : U → V ⊂ N onto an open subsetV of a model Riemannian
manifoldN . For overlapping chartsUα ∩ Uβ , the corresponding local transition functions
γαβ = fα ◦ f−1

β onN are isometries. Further, we denote by∇ the canonical connection of
the normal bundleQ = TM/L of F. It is defined by

∇Xs = π([X, Ys ]) for X ∈ Γ L, ∇Xs = π(∇M
X Ys) for X ∈ Γ L⊥, (2.1)

wheres ∈ ΓQ, andYs ∈ Γ L⊥ corresponding tos under the canonical isomorphism
L⊥ ∼= Q. The connection∇ is metric and torsion free. It corresponds to the Riemannian
connection of the model spaceN [4]. The curvatureR∇ of ∇ is defined by

R∇
XY = ∇X∇Y − ∇Y∇X − ∇[X,Y ] for X, Y ∈ TM.

Since i(X)R∇ = 0 for anyX ∈ Γ L [4], we can define the (transversal) Ricci curvature
ρ∇ : ΓQ → ΓQ and the (transversal) scalar curvatureσ∇ of F by

ρ∇(s) =
∑
a

R∇
sEaEa, σ∇ =

∑
α

gQ(ρ
∇(Ea), Ea),

where{Ea}a=1,...,q is an orthonormal basis forQ. The foliationF is said to be (transversally)
Einsteinianif the model spaceN is Einsteinian, that is,

ρ∇ = 1

q
σ∇ · id (2.2)

with constant transversal scalar curvatureσ∇ . Thesecond fundamental formof α of F is
given by

α(X, Y ) = π(∇M
X Y) for X, Y ∈ Γ L. (2.3)

It is trivial thatα isQ-valued, bilinear and symmetric. Themean curvature vector fieldof
F is then defined by

τ =
∑
i

α(Ei, Ei), (2.4)
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where{Ei}i=1,...,p is an orthonormal basis ofL. The dual formκ, themean curvature form
for L, is then given by

κ(X) = gQ(τ,X) for X ∈ ΓQ. (2.5)

The foliationF is said to beminimal(or harmonic) if κ = 0.
LetΩr

B(F) be the space of allbasicr-forms, i.e.,

Ωr
B(F) = {φ ∈ Ωr(M)|i(X)φ = 0, θ(X)φ = 0 for X ∈ Γ L}.

The foliationF is said to beisoparametricif κ ∈ Ω1
B(F). We already know thatκ is closed,

i.e., dκ = 0 if F is isoparametric[8]. Since the exterior derivative preserves the basic forms
(that is,θ(X)dφ = 0 and i(X)dφ = 0 for φ ∈ Ωr

B(F)), the restrictiondB = d|Ω∗
B(F)

is
well defined. LetδB be the adjoint operator ofdB . Then it is well known[3] that

dB =
∑
a

θa ∧ ∇Ea , δB = −
∑
a

i(Ea)∇Ea + i(κB), (2.6)

where{Ea}a=1,...,q is a local orthonormal basic frame inQ and{θa} its gQ-dual 1-form.
Thebasic Laplacianacting onΩ∗

B(F) is defined by

∆B = dBδB + δBdB. (2.7)

If F is the foliation by points ofM, the basic Laplacian is the ordinary Laplacian.
Further,F is said to be aKähler foliation[7] if it is modeled on a Kähler manifold. Namely,

by a Kähler foliationF we mean a foliation satisfying the following conditions: (i)F is
Riemannian, with a bundle-like metricgM onM inducing the holonomy invariant metric
gQ onQ ≡ L⊥, (ii) there is a holonomy invariant almost complex structureJ : Q → Q,
where dimQ = q (= 2n) (real dimension), with respect to whichgQ is Hermitian, i.e.,

gQ(JX, JY) = gQ(X, Y ) (2.8)

for X, Y ∈ ΓQ, and (iii) if ∇ is almost complex, i.e.,∇J = 0. Note that

Ω(X, Y ) = gQ(X, JY) (2.9)

defines a basic 2-formΩ, which is closed as a consequence of∇gQ = 0 and∇J = 0. Then
we can express the basic 2-formΩ by

Ω =
n∑

k=1

θ2k−1 ∧ θ2k. (2.10)

For a Kähler foliation, we have the following identities[7]:

R∇
XYJ = JR∇

XY, R∇
JXJY= R∇

XY, (2.11)

R∇
XYZ + R∇

YZX + R∇
ZXY = 0, (2.12)

whereX,Y andZ are elements ofΓQ. In the sequal it will be convenient to use the following
orthonormal frame onM. Forx ∈ M, let{eA}A=1,...,p+q be an oriented orthonormal basis of
TxM with {ei}i=1,...,p in Lx and{eα, Jeα}α=p+1,...,p+n in L⊥

x (F is of codimensionq = 2n
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on Mp+q ). The transversal Kähler property ofF allows then to extendeα, Jeα to local
vector fieldsEα, JEα ∈ Γ L⊥ such that

(∇EαEβ)x = 0, (∇EαJEβ)x = 0,

(∇JEαEβ)x = 0, (∇JEαJEβ)x = 0. (2.13)

As a consequence of torsion freeness[4]

[Eα,Eβ ]x, [Eα, JEβ ]x, [JEα, JEβ ]x ∈ Lx. (2.14)

TheEα, JEα can be chosen as (local) infinitesimal automorphisms ofF, so that

∇XEα = π [X,Eα] = 0 for X ∈ Γ L. (2.15)

We can completeEα, JEα by the Gram–Schmidt process to a moving local frame by adding
Ei ∈ Γ L with (Ei)x = ei .

An infinitesimal automorphismY gives rise to atransversally holomorphic fields = π(Y )

if and only if

θ(Y )J = 0, (2.16)

where forZ ∈ Γ L⊥, (θ(Y )J )(Z) = θ(Y )(JZ) − J (θ(Y )Z). But this expression equals
π [Y, JZ] − Jπ [Y,Z], which yields the formula

(θ(Y )J )(Z) = −∇JZs + J∇Zs,

so that(2.16)holds if and only if

∇JZs = J∇Zs for all Z ∈ Γ L⊥. (2.17)

3. The structures of the foliated spinor bundle of a Kähler spin foliation

In this section, we shall modify all the definitions and notations of Kirchberg’s paper
[5] for foliation. We first define the Kähler spin foliation. Let(M, gM,F) be a compact
Riemannian manifold with a Kähler foliationF of codimensionq = 2n and a bundle-like
metric gM with respect toF. Let SO(q) → Pso → M be the principal bundle of (ori-
ented) transverse orthonormal framings. Thetransverse spin structure[3] is a principal
Spin(q)-bundlePspintogether with two sheeted coveringξ : Pspin → Psosuch thatξ(p·g) =
ξ(p)ξ0(g) for all p ∈ Pspin, g ∈ Spin(q), whereξ0 : Spin(q) → SO(q) is a covering. The
Riemannian foliationF is called aKähler spin foliationif F is Kähler foliation with a
transverse spin structure. Thefoliated spinor bundleS(F) of the Kähler spin foliationF is
defined by

S(F) = Pspin ×Spin(q) S,

whereS is the spinor space associated toQ, which is a Clifford module over the transversal
Clifford algebra Cl(Q) of F. The Hermitian scalar product〈, 〉 defined onS induces a
Hermitian scalar product onS(F), which we also denote by〈, 〉. The sections ofS(F) are
calledtransversal spinor fields.
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By the Clifford multiplication in the fibers ofS(F) for any vector fieldX in Q and any
transversal spinor fieldψ , the Clifford productX ·ψ , which is also a transversal spinor field,
is defined. This product has the following properties: for allX, Y ∈ ΓQandφ,ψ ∈ Γ S(F),

(X · Y + Y ·X)ψ = −2gQ(X, Y )ψ, (3.1)

〈X · ψ, φ〉 + 〈ψ,X · φ〉 = 0, (3.2)

∇Y (X · ψ) = (∇YX) · ψ +X · (∇Yψ), (3.3)

where∇ is a metric covariant derivation onS(F), i.e., for allX ∈ ΓQ, and allψ, φ ∈
Γ S(F), it holds

X〈ψ, φ〉 = 〈∇Xψ, φ〉 + 〈ψ,∇Xφ〉. (3.4)

Moreover, if we define the Clifford productξ · ψ of a 1-formξ ∈ Q∗ and a transversal
spinor fieldψ as

ξ · ψ ≡ Xξ · ψ, (3.5)

whereXξ ∈ ΓQ is agQ-dual vector ofξ , then any basicr-form can be considered as an
endomorphism ofS(F). Namely, for any basic formω = ∑

i1<···<ir ωi1···ir θ
i1 ∧ · · · ∧ θir ,

we define the Clifford productωφ locally by

ωφ =
∑

ωi1···ir θi1 · · · θir φ. (3.6)

So for any basicr-formω, the equation

〈ωφ,ψ〉 = (−1)r(r+1)/2〈φ, ωψ〉 (3.7)

holds, i.e., the adjoint ofω∗ is given by

ω∗ = (−1)r(r+1)/2ω. (3.8)

From(2.10) and (3.6), we know that

Ω = −1

2

∑
a

Ea · JEa = 1

2

∑
a

JEa · Ea, (3.9)

where{Ea} is a local orthonormal basic frame inQ. From(3.9), the relation

X ·Ω −Ω ·X = 2JX for X ∈ ΓQ (3.10)

holds.

Lemma 3.1 (cf. [5]). On the Kähler spin foliation, the eigenvalues ofΩx : Sx(F) → Sx(F)
(x ∈ M) are

µr = (n− 2r)i, r = 0, . . . , n. (3.11)

From (3.11), the foliated spinor bundleS(F) of a Kähler spin foliationF splits into the
orthogonal direct sum

S(F) = S0 ⊕ S1 ⊕ · · · ⊕ Sn, (3.12)
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where the fiber(Sr)x of the subbundleSr is just defined as the eigenspace corresponding to
the eigenvalueµr of Ωx : Sx(F) → Sx(F). The decomposition(3.12)is compatible with
∇, i.e., ifψ is a section ofSr , then∇Xψ is also a section ofSr for any vector fieldX.

Let pr : S(F) → S(F) (r = 0, . . . , n) be the projections corresponding to the decom-
position(3.12). Then we have the following properties:

p2
r = pr, prps = pspr = 0, r 
= s,

n∑
r=0

pr = 1, (3.13)

〈prψ, φ〉 = 〈ψ,prφ〉, ∇pr = 0, Sr = prS(F). (3.14)

Hence we get

Ω =
n∑

r=0

i(n− 2r)pr . (3.15)

For any vector fieldX ∈ ΓQ, we have the relations

Xps = ps−1Xps + ps+1Xps , (3.16)

J (X)ps = −ips−1Xps + ips+1Xps , s ∈ N, (3.17)

whereps = 0 for s 
= {0,1, . . . , n}.
Let ι : S(F) → S(F) be the bundle map defined by

ι =
n∑

s=0

isps. (3.18)

Thenι has the properties

ι∗ι = 1, ι2 = ι∗2, ι4 = 1, ι3 = ι∗, ∇ι = 0. (3.19)

For any vector fieldX ∈ ΓQ, the equations

J (X)ι = ιX, Xι2 = −ι2X (3.20)

are satisfied. The proofs of the above equations are similar to the usual ones in Kähler
geometry[5].

4. The transversal Dirac operators

LetF be a Kähler spin foliation on a compact oriented manifoldM. Then the transversal
Dirac operatorDtr : Γ S(F) → Γ S(F) is locally given by[1–3]

Dtrφ =
∑
a

Ea · ∇Eaφ − 1

2
κ · φ for φ ∈ Γ S(F), (4.1)

where{Ea}a=1,...,2n is a local orthonormal basic frame inQ. Let D̃tr be the operator which
is locally defined by

D̃trφ =
∑
a

JEa · ∇Eaφ − 1

2
Jκ · φ for φ ∈ Γ S(F). (4.2)
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Using Green’s theorem on the foliated Riemannian manifold[9], we know for anyφ,ψ ∈
Γ S(F)∫

M

〈Dtrφ,ψ〉 =
∫
M

〈φ,Dtrψ〉,
∫
M

〈D̃trφ,ψ〉 =
∫
M

〈φ, D̃trψ〉, (4.3)

i.e.,Dtr andD̃tr are self-adjoint transversally elliptic operators. From∇ι = 0 and(3.20),
we obtain

D̃trι = ιDtr, ιD̃tr = −Dtrι. (4.4)

From(4.4), we get

Dtrι
2 = −ι2Dtr, D̃trι

2 = −ι2D̃tr. (4.5)

From(4.4) and (4.5), we have

D2
trι = ιD̃2

tr, DtrιDtrι = ιD̃trιD̃tr. (4.6)

Moreover, from(3.16) and (3.17)and their Hermitian adjoint equations, we have

psD̃tr − D̃trps−1 = −i(psDtr −Dtrps−1), s ∈ N. (4.7)

We now define∇∗
tr∇ : Γ S(F) → Γ S(F) as

∇∗
tr∇trφ = −

∑
a

∇2
Ea,Ea

φ + ∇κφ, (4.8)

where∇2
V,W = ∇V∇W − ∇∇V W for V,W ∈ TM. Then we have the following proposition.

Proposition 4.1. (see[3]).For all φ,ψ ∈ Γ S(F),∫
M

〈∇∗
tr∇trφ,ψ〉 =

∫
M

〈∇trφ,∇trψ〉. (4.9)

If F is isoparametric, i.e.,κ ∈ Ω1
B , then we have[3]

D2
trφ = ∇∗

tr∇trφ + 1
4σ∇φ +K∇φ, (4.10)

whereK∇ = (1/2){−δκ + (1/2)|κ|2}. By direct calculation, we also have

D̃2
trφ = ∇∗

tr∇trφ + 1

4
σ∇φ − 1

4
|κ|2φ − 1

2

∑
a

JEa · J (∇Eaκ) · φ. (4.11)

If κ is a transversally holomorphic (see(2.16)), we have, from the definition of Clifford
multiplication and(2.6),∑

a

JEa · J (∇Eaκ) =
∑
a

JEa · ∇JEa κ = dBκ + δBκ − |κ|2.

If F is an isoparametric,κ is already closed, i.e., dκ = 0 [8]. So we have

D̃2
trφ = ∇∗

tr∇trφ + 1
4σ∇φ +K∇φ. (4.12)

Then we have the following proposition.
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Proposition 4.2. Let (M, gM,F ) be a Riemannian manifold with a Kähler spin foliation
F and a bundle-like metricgM with κ ∈ Ω1

B(F ). Suppose the mean curvature ofF is a
transversally holomorphic. Then we have

D2
tr = D̃2

tr, DtrD̃tr + D̃trDtr = 0.

Proof. The first equation is trivial from(4.10) and (4.12). Next, fix x ∈ M and choose an
orthonormal basic frame{Ea} with the property that(∇Ea)x = 0 for all a. Then we have
at the pointx that for anyφ ∈ Γ S(F),

DtrD̃trφ =Dtr

(∑
a

JEa · ∇Eaφ − 1

2
Jκ · φ

)

=
∑
a,b

Eb · ∇Eb
(JEa · ∇Eaφ)− 1

2
κ · JEa · ∇Eaφ − 1

2
Dtr(Jκ · φ)

=
∑
a,b

Eb · JEa · ∇Eb
∇Eaφ − 1

2
κ · JEa · ∇Eaφ

− 1

2

{
dB(Jκ)+ δB(Jκ)+

∑
a

Ea · Jκ · ∇Eaφ − 1

2
κ · Jκ · φ

}
.

Similarly, we have

D̃trDtr =
∑
a,b

JEa · Eb · ∇Ea∇Eb
φ − 1

2
Jκ · Ea · ∇Eaφ

− 1

2

{
−dB(Jκ)− δB(Jκ)+

∑
a

JEa · κ · ∇Eaφ − 1

2
Jκ · κ · φ

}
.

SinceX · Y + Y ·X = −2gQ(X, Y ) andgQ is Hermitian, we have

(DtrD̃tr + D̃trDtr)φ =
∑
a,b

(Eb · JEa + JEb · Ea)∇Eb
∇Eaφ

=
∑
a,b

(JEb · JEa − Eb · Ea)∇JEb∇Eaφ

=
∑
a,b

(−JEa · JEb + Ea · Eb)∇JEb∇Eaφ

=
∑
a,b

(−JEa · JEb + Ea · Eb)(∇Ea∇JEbφ + RS(JEb, Ea)φ)

= −
∑
a,b

(JEa · Eb + Ea · JEb)∇Ea∇Eb
φ

−
∑
a,b

(JEa · Eb + Ea · JEb)R
S(Eb,Ea)φ

= −(DtrD̃tr + D̃trDtr)φ.

This finishes the proof. �
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From(4.6), we have the following corollary.

Corollary 4.3. On an isoparametric Kähler spin foliationFwith a transversally holomor-
phic mean curvatureκ, we have

D2
trι = ιD2

tr, DtrιDtrι = ιDtrιDtr.

5. Eigenvalue estimate

Let (M, gM,F ) be a compact Riemannian manifold with a Kähler spin foliationF of
codimensionq = 2n and a bundle-like metricgM with respect toF. On the foliated spinor
bundleS(F ), we introduce a new connection of the form

fg
∇Xφ = ∇Xφ + fπ(X) · φ + igJπ(X) · ι2φ for X ∈ TM, (5.1)

wheref, g are real valued basic functions onM andπ : TM → Q. Trivially, this connection
∇ fg is a metrical connection. Moreover, we have the following lemma.

Lemma 5.1. Let (M, gM,F) be a compact Riemannian manifold with a Kähler foliation
F and a bundle-like metricgM with respect toF. Then,

〈〈
fg
∇∗

tr

fg
∇ trφ,ψ〉〉 = 〈〈 fg

∇ trφ,
fg
∇ trψ〉〉

for all φ,ψ ∈ Γ S, where〈〈φ,ψ〉〉 = ∫
M

〈φ,ψ〉 is the Hermitian inner product onS(F).

Proof. Fix x ∈ M and choose an orthonormal basic frame{Ea} such that(∇Ea)x = 0 for
all a. Then we have that atx,

〈
fg
∇∗

tr

fg
∇ trφ,ψ〉 = −

∑
a

〈 fg
∇Ea

fg
∇Eaφ,ψ〉 + 〈 fg

∇κφ, ψ〉 = −
∑
a

Ea〈
fg
∇Eaφ,ψ〉

+
∑
a

〈 fg
∇Eaφ,

fg
∇Eaψ〉 + 〈 fg

∇κφ, ψ〉 = −
∑
a

Ea〈∇Eaφ,ψ〉

−
∑
a

Ea〈 f Eaφ, ψ〉 −
∑
a

Ea〈igJEa · ι2φ,ψ〉 +
∑
a

〈 fg
∇Eaφ,

fg
∇Eaψ〉

+ 〈∇κφ, ψ〉 + 〈f κ · φ,ψ〉 + 〈igJκ · ι2φ,ψ〉 = −div∇ U

− div∇ V − div∇ W +
∑
a

〈 fg
∇Eaφ,

fg
∇Eaψ〉 + 〈∇κφ, ψ〉

+ 〈f κ · φ,ψ〉 + 〈igJκ · ι2φ,ψ〉,
whereU,V,W ∈ ΓQ ⊗ C are defined by the conditions thatgQ(U,Z) = 〈∇Zφ,ψ〉,
gQ( f V, Z) = 〈 f Z · φ,ψ〉 andgQ(gW, Z) = 〈gJZ· ι2φ,ψ〉 for all Z ∈ ΓQ. The last line
is proved as follows. Atx ∈ M,

div∇(U) =
∑
a

gQ(∇EaU,Ea) =
∑
a

EagQ(U,Ea) =
∑
a

Ea〈∇Eaφ,ψ〉.
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Similarly, we have that

div∇(fV) =
∑
a

Ea〈 f Ea · φ,ψ〉, div∇(gW) =
∑
a

Ea〈gJEa · ι2φ,ψ〉.

By the Green’s theorem on the foliated Riemannian manifold[9],∫
M

div∇(V ) = 〈〈κ, V 〉〉 = 〈〈∇κφ, ψ〉〉. (5.2)

Similarly, we have∫
M

div∇( f V) = 〈〈f κ · φ,ψ〉〉,
∫
M

div∇(gW) = 〈〈gJκ · ι2φ,ψ〉〉.

By integrating, we obtain our result. �

On the other hand, by direct calculation, we have

fg
∇∗

tr

fg
∇ trφ = −

∑
a

fg
∇Ea

fg
∇Eaφ + fg

∇κφ = −
∑
a

∇Ea∇Eaφ + ∇κφ

− 2f
∑
a

Ea · ∇Eaφ + 2igι2
∑
a

JEa · ∇Eaφ − f 2
∑
a

Ea · Ea · φ

+ g2
∑
a

JEaι
2JEaι

2φ − 2ifg
∑
a

Ea · JEaι
2φ −

∑
a

Ea(f )Eaφ

− i
∑
a

Ea(g)JEaι
2φ + f κ · φ + igJκ · ι2φ.

From this equation, we obtain

fg
∇∗

tr

fg
∇ trφ = ∇∗

tr∇trφ − 2fDtrφ + 2igι2D̃trφ + q(f 2 + g2)φ

+ 4ifgΩι2φ − grad∇(f ) · φ − iJ (grad∇(g)) · ι2φ,
where grad∇(f ) = ∑

a Ea(g)Ea is a transversal gradient off . From(4.10), we get

fg
∇∗

tr

fg
∇ trφ =D2

trφ − 2fDtrφ + 2igι2D̃trφ + 4ifgΩι2φ − grad∇(f ) · φ
− iJ (grad∇(g)) · ι2φ + {q(f 2 + g2)− 1

4σ∇ −K∇}φ. (5.3)

Let Eλ(Dtr) be the eigenspace of the transversal Dirac operatorDtr corresponding to the
eigenvalueλ. Letφ ∈ Eλ(Dtr). Then we have

‖ fg
∇ trφ‖2 = λ2‖φ‖2 − 2f λ‖φ‖2 + 2g〈〈iD̃trφ, ι

2φ〉〉 + 4fg〈〈iΩφ, ι2φ〉〉
− 〈〈grad∇(f )φ, φ〉〉 − i〈〈J (grad∇(g))ι

2φ, φ〉〉
+ {q(f 2 + g2)− 1

4σ∇ −K∇}‖φ‖2. (5.4)

From(4.4)–(4.6), we have the following lemma.
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Lemma 5.2 (cf. [5]). Letφ ∈ Eλ(Dtr). Thenfλ : Eλ(Dtr) → Eλ(Dtr) defined by

fλ(φ) = (Dtr + λ)ι∗φ

satisfies

f 4
λ + 4λ4 = 0. (5.5)

The above equation shows that the eigenspaceEλ(Dtr) is decomposed as

Eλ(Dtr) = ⊕3
>=0E

>
λ(Dtr), (5.6)

whereE>
λ(Dtr) = {φ ∈ Eλ(Dtr)|fλφ = i>(1 + i)λφ} (> = 0,1,2,3). A corollary of

Lemma 5.2is the following proposition.

Proposition 5.3 (cf. [5]). For any nonzeroφ ∈ E>
λ(Dtr), we have

D̃trφ = λ(i>(1 + i)ι− 1)φ. (5.7)

From(4.7) and (5.7), we have the following proposition.

Proposition 5.4 (cf. [5]). For any nonzeroφ ∈ E>
λ(Dtr), we have

‖p4s−>−1φ‖ = ‖p4s−>φ‖, p4s−>+1φ = p4s−>+2φ = 0, s ∈ N ∪ {0}. (5.8)

From(3.15), (5.7) and (5.8), we have the following corollary.

Corollary 5.5 (cf. [5]). For φ ∈ E>
λ(Dtr),

〈〈iD̃trφ, ι
2φ〉〉 = (−1)>+1λ‖φ‖2, 〈〈iΩφ, ι2φ〉〉 = (−1)>‖φ‖2.

Note that for allX ∈ ΓQ andφ ∈ Γ S,

〈X · φ, φ〉 = 〈φ,X · φ〉 = −〈X · φ, φ〉, (5.9)

〈JXι2φ, φ〉 = 〈φ, JXι2φ〉 = −〈JX · φ, ι2φ〉 = −〈ι2JX · φ, φ〉 = 〈JXι2φ, φ〉. (5.10)

So we know that〈grad∇(f )φ, φ〉 and i〈J (grad∇(g))ι2φ, φ〉 are purely imaginary. Hence if
we combine(5.4)andCorollary 5.5, then we have, forφ ∈ E>

λ(Dtr),

‖ fg
∇ trφ‖2 =

∫
M

(
F(x, y)λ2 − 1

4
σ∇ −K∇

)
|φ|2, (5.11)

〈〈grad∇(f )φ, φ〉〉 + i〈〈J (grad∇(g))ι
2φ, φ〉〉 = 0, (5.12)

wheref = λx, g = λy andF(x, y) = qx2 + qy2 + 4(−1)>xy− 2x − 2(−1)>y + 1.
It is straightforward to notice the following lemma.

Lemma 5.6. The polynomial F has its minimumq/(q + 2) at the point(1/(q + 2),
(−1)>/(q + 2)).
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Now we assume that the mean curvatureκ ofF satisfiesδκ = 0. And if we putf = λ/(q+2)
andg = (−1)>λ/(q + 2), then(5.11)takes the form

‖ fg
∇ trφ‖2 =

∫
M

(
q

q + 2
λ2 − 1

4
Kσ

)
|φ|2, (5.13)

whereKσ = σ∇ + |κ|2. From(5.13), we have the following theorem.

Theorem 5.7. Let (M, gM,F) be a compact Riemannian manifold with a Kähler spin
foliationF of codimensionq = 2n and a bundle-like metricgM with κ ∈ Ω1

B(F). Assume
that the mean curvatureκ ofF satisfiesδκ = 0 and transversally holomorphic. If Kσ ≥ 0,
then the eigenvalueλ ofDtr satisfies

λ2 ≥ q + 2

4q
K0
σ ,

whereK0
σ = minKσ .

Remark 5.8. If F is a point foliation, then the transversal Dirac operator is just a Dirac
operator on a Kähler manifold. Therefore,Theorem 5.7is a generalization of the result on
a Kähler manifold (cf.[5]).

Remark 5.9. The estimation of the eigenvalue of the transversal Dirac operator on a Kähler
spin foliation is a sharper one than the estimation(1.1).

6. The limiting case

In this section, we study the Kähler spin foliation which admits a nonzero transversal
spinorφ1 such thatDtrφ1 = λ1φ1 with λ1 = ((q + 2)/4q)K0

σ . From(5.13), we have that
for anyφ1 ∈ E>

λ1
(Dtr)

‖∇f
tr φ1‖2 =

∫
M

1

4
(K0

σ −Kσ )|φ1|2, (6.1)

where

∇f
Xφ = ∇Xφ + fπ(X)φ + i(−1)>fJπ(X)ι2φ. (6.2)

From this equation, we have

Kσ = K0
σ and ∇f

tr φ1 = 0. (6.3)

From the first equation in(6.3), if the transversal scalar curvatureσ∇ is nonnegative, we
know that

σ∇ = constant and |κ| = constant. (6.4)

From the second equation in(6.3), we have∑
a

Ea · ∇Eaφ1 + f
∑
a

Ea · Ea · φ1 + i(−1)>f
∑
a

Ea · JEaι
2φ1 = 0,
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where{Ea} is an orthonormal basic frame onQ. From this equation, we have

Dtrφ1 + 1
2κ · φ1 − qfφ1 − 2i(−1)>Ωι2φ1 = 0.

SinceDtrφ1 = λ1φ1 andf = λ1/(q + 2), we have

(1 − i(−1)>Ωι2)φ1 = − 1

4f
κ · φ1. (6.5)

From the second equation in(6.3), we also have∑
a

JEa · ∇Eaφ1 + f
∑
a

JEa · Ea · φ1 + i(−1)>f
∑
a

JEa · JEaι
2φ1 = 0.

This equation implies that

D̃trφ1 + 1
2Jκ · φ1 + 2fΩφ1 − i(−1)>qfι2φ1 = 0.

From(5.7), we have

(q + 2)f (i>(1 + i)ι− 1)φ1 + 1
2Jκ · φ1 + 2fΩφ1 − i(−1)>q fι2φ1 = 0. (6.6)

By applyingι2 to (6.7)and using(3.20), we get

(q + 2)f (i>(1 + i)ι− 1)ι2φ1 − 1
2Jκι

2φ1 + 2fΩι2φ1 − i(−1)>q fφ1 = 0. (6.7)

Hence this equation is equivalent to

(1 − i(−1)>Ωι2)φ1 = q + 2

2
{1 − i(−1)>(1 − i>(1 + i)ι)ι2}φ1 − i

(−1)>

4f
Jκι2φ1.

(6.8)

From(5.8), we obtain

{1 − i(−1)>(1 − i>(1 + i)ι)ι2}φ1 = 0.

Hence the formula(6.8) is equivalent to

(1 − i(−1)>Ωι2)φ1 = −i
(−1)>

4f
Jκ · ι2φ1. (6.9)

Combining(6.5)with (6.9), we have

Jκ · φ1 = i(−1)>+1κ · φ1. (6.10)

By long calculation, we have that forX ∈ ΓQ andφ ∈ E>
λ(Dtr)∑

a

Ea · Rf
XEa

φ =
∑
a

Ea · RS
XEaφ + 2(q + 2)f 2X

+ 4i(−1)>f 2JXι2(1 − i(−1)>Ωι2)φ, (6.11)
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whereRf is a curvature tensor of∇f andRS a curvature tensor of∇ on S(F) which is
given by[6]

RS
XYφ = 1

4

∑
a,b

gQ(R
∇
XYEa,Eb)Ea · Eb · φ for X, Y ∈ TM.

If ∇f φ = 0, thenRf
XYφ = 0. Hence we have that for anyφ ∈ E>

λ(Dtr)∑
a

Ea · RS(X,Ea)φ = −f 2{2(q + 2)X + 4i(−1)>JXι2(1 − i(−1)>Ωι2)}φ, (6.12)

where{Ea}a=1,...,q is an orthonormal basic frame ofQ.
If we substitute(6.9) into (6.12), then we get that for anyφ ∈ E>

λ(Dtr)∑
a

Ea · RS(X,Ea)φ = −f 2
{

2(q + 2)X − 1

f
JX · Jκ

}
φ. (6.13)

On the foliated spinor bundleS(F), we have[6] that for anyφ ∈ E>
λ(Dtr)∑

a

EaR
S(X,Ea)φ = −1

2ρ
∇(X) · φ for X ∈ ΓQ. (6.14)

If we compare(6.13)with (6.14), then we obtain

ρ∇(X) = 4f 2(q + 2)X − 2fJX · Jκ for X ∈ ΓQ. (6.15)

From(6.15), we have

〈ρ∇(κ) · φ, φ〉 = 4f 2(q + 2)〈κ · φ, φ〉 − 2f |κ|2〈φ, φ〉.
From(5.9), the left-hand side is purely imaginary. Hence we have

|κ|2〈φ, φ〉 = 0. (6.16)

Becauseφ 
= 0 at some pointx ∈ M, this implies that|κ|(x) = 0 and then from(6.4),
|κ| = 0 for anyx ∈ M. That is, the foliationF is minimal. So(6.15)implies that

ρ∇(X) = 4f 2(q + 2)X for X ∈ ΓQ. (6.17)

This implies that theF is a transversally Einsteinian.
On the other hand, sinceF is minimal, from(6.9), we have

(1 − i(−1)>Ωι2)φ1 = 0. (6.18)

From the definition(3.18)of ι and(3.15), we have

0 = (1 − i(−1)>Ωι2)φ1 =
n∑

s=0

(1 + (−1)>+s(n− 2s)ps)φ1. (6.19)

Hence fromProposition 5.4, (6.19)is equivalent to∑
s

(n− 8s + 2>+ 1)(p4s−> − p4s−>−1)φ1 = 0. (6.20)
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If we chooses ∈ N such thatp4s−>φ 
= 0, thenn = 8s + 2> + 1. This imply thatn must
be odd. So we have the following theorem.

Theorem 6.1. Let (M, gM,F) be a compact Riemannian manifold with a Kähler spin
foliation F of codimensionq = 2n and a bundle-like metricgM with κ ∈ Ω1

B(F).
Assume that the mean curvatureκ ofF satisfiesδκ = 0 and transversally holomorphic. If
there exists an eigenspinor fieldφ(
= 0) of transversal Dirac operatorDtr for the eigen-
valueλ2 = ((q+2)/4q)K0

σ , thenF is a minimal, transversally Einsteinian of odd complex
codimensionn with nonnegative constant transversal scalar curvatureσ∇ .
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