Lower bounds for the eigenvalue of the transversal Dirac operator on a Kähler foliation

Seoung Dal Jung ${ }^{\text {a,* }}$, Tae Ho Kang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Jheju National University, Cheju 690-756, South Korea
${ }^{\text {b }}$ Department of Mathematics, University of Ulsan, Ulsan 680-749, South Korea

Received 2 April 2002

Abstract

On a foliated Riemannian manifold with a Kähler spin foliation, we give a lower bound for the square of the eigenvalues of the transversal Dirac operator. We prove, in the limiting case, that the foliation is a minimal, transversally Einsteinian of odd complex dimension with nonnegative constant transversal scalar curvature. © 2002 Elsevier Science B.V. All rights reserved.

MSC: 53C12; 53C27
JGP SC: Spinors and twistors
Keywords: Kähler foliation; Transversal Dirac operator; Transversal Killing spinor; Transversally Einsteinian

1. Introduction

On a foliated Riemannian manifold $\left(M, g_{M}, \mathcal{F}\right)$ with a transverse spin structure, it was shown by Jung [3] that for any eigenvalue λ of the transversal Dirac operator $D_{\text {tr }}$, the estimation

$$
\begin{equation*}
\lambda^{2} \geq \frac{q}{4(q-1)} K_{\sigma}^{0} \tag{1.1}
\end{equation*}
$$

holds, where $q=\operatorname{codim} \mathcal{F}, K_{\sigma}^{0}=\min \left(\sigma^{\nabla}+|\kappa|^{2}\right)(\geq 0)$. Here σ^{∇} is a transversal scalar curvature and κ is the mean curvature form of \mathcal{F}. In the limiting case, the foliation is a minimal transversally Einsteinian with constant transversal scalar curvature. The essential point in the proof of (1.1) was the introduction of a modified connection of the form

$$
\nabla_{X}^{f} \phi=\nabla_{X} \phi+f \pi(X) \cdot \phi
$$

[^0]where f is a real valued basic function and $\pi: T M \rightarrow Q$ is a projection from the tangent bundle onto the normal bundle Q (see Section 2). In the case that the equality in (1.1) holds, the eigenspinor ϕ_{1} corresponding to the first eigenvalue λ_{1} with $\lambda_{1}^{2}=(q / 4(q-1)) K_{\sigma}^{0}$ is a transversal Killing spinor, i.e., $\nabla_{X}^{f_{1}} \phi=0, f_{1}=\lambda_{1} / q$ and the foliation \mathcal{F} is minimal. Hence we can prove that the equality in (1.1) on the Kähler spin foliation of $q \neq 2$ is not possible. Namely, if one takes the basic 2 -form Ω as an endomorphism of the foliated spinor bundle, then since \mathcal{F} is minimal, one obtains the equation
\[

$$
\begin{equation*}
D_{\mathrm{tr}}\left(\Omega \phi_{1}\right)=\frac{q-4}{q} \lambda_{1} \Omega \phi_{1} . \tag{1.2}
\end{equation*}
$$

\]

Since the number $((q-4) / q) \lambda_{1}$ cannot be an eigenvalue of $D_{\text {tr }}$ for $q \neq 2$, (1.2) implies $\Omega \phi=0$. Hence by straight calculation, it can be shown that $D_{\text {tr }} \phi_{1}=\lambda_{1} \phi_{1}$ and $\Omega \phi_{1}=0$ imply $\phi_{1}=0$, which implies that in the Kähler spin foliation, the equality in (1.1) does not hold. Hence we obtain a better lower bound for the eigenvalues of D_{tr} than the one in (1.1). Namely, we prove the following theorem.

Main Theorem. Let $\left(M, g_{M}, \mathcal{F}\right)$ be a compact Riemannian manifold with a Kähler spin foliation \mathcal{F} of codimension $q=2 n$ and a bundle-like metric g_{M} with $\kappa \in \Omega_{B}^{1}(\mathcal{F})$. Assume that the mean curvature κ of \mathcal{F} satisfies $\delta \kappa=0$ and transversally holomorphic. If $K_{\sigma}=$ $\sigma^{\nabla}+|\kappa|^{2} \geq 0$, then the eigenvalue λ of $D_{\text {tr }}$ satisfies

$$
\begin{equation*}
\lambda^{2} \geq \frac{q+2}{4 q} K_{\sigma}^{0} \tag{1.3}
\end{equation*}
$$

where $K_{\sigma}^{0}=\min K_{\sigma}$. If $(1 / 2) \sqrt{((q+2) / q) K_{\sigma}^{0}}$ itself is an eigenvalue of D_{tr}, then the Kähler foliation \mathcal{F} is a minimal, transversally Einsteinian of odd complex dimension n with nonnegative constant transversal scalar curvature σ^{∇}.

Main Theorem is a generalization of the one on an ordinary Kähler spin manifold by Kirchberg [5]. Namely, on the closed Kähler spin manifold $M^{2 n}$ with positive scalar curvature R, the eigenvalues λ of the Dirac operator D satisfies the following:

$$
\begin{equation*}
\lambda^{2} \geq \frac{m+2}{4 m} R_{0}, \quad m=2 n \tag{1.4}
\end{equation*}
$$

where $R_{0}=\min R$. In the limiting case, the manifold is an Einstein of odd complex dimension m.
This paper is organized as follows. In Section 2, we give the definition of a Kähler foliation. In Section 3, we review the transversal spin structure on the Riemannian foliation and modify many properties of Kirchberg's paper [5] for foliation. In Section 4, we study some basic properties of the transversal Dirac operator. In Section 5, we give a lower bound for the square of the eigenvalues of the transversal Dirac operator. In Section 6, we prove, in the limiting case, that the foliation is a minimal, transversally Einsteinian of odd complex dimension with nonnegative constant transversal scalar curvature.

This paper is based on [5]. Since the techniques are similar to those in [5], we omit proofs of many equations except for equations related to the mean curvature form κ of the foliation \mathcal{F}.

2. Kähler foliation

Let $\left(M, g_{M}, \mathcal{F}\right)$ be a $(p+q)$-dimensional Riemannian manifold with a foliation \mathcal{F} of codimension q and a bundle-like metric g_{M} with respect to \mathcal{F}.

We recall the exact sequence

$$
0 \rightarrow L \rightarrow T M \xrightarrow{\pi} Q \rightarrow 0
$$

determined by the tangent bundle L and the normal bundle Q of \mathcal{F}. The assumption of g_{M} to be a bundle-like metric means that the induced metric g_{Q} on the normal bundle $Q \cong L^{\perp}$ satisfies the holonomy invariance condition $\theta(X) g_{Q}=0$ for all $X \in \Gamma L$, where $\theta(X)$ denotes the Lie derivative with respect to X.

For a distinguished chart $\mathcal{U} \subset M$ the leaves of \mathcal{F} in \mathcal{U} are given as the fibers of a Riemannian submersion $f: \mathcal{U} \rightarrow \mathcal{V} \subset N$ onto an open subset \mathcal{V} of a model Riemannian manifold N. For overlapping charts $U_{\alpha} \cap U_{\beta}$, the corresponding local transition functions $\gamma_{\alpha \beta}=f_{\alpha} \circ f_{\beta}^{-1}$ on N are isometries. Further, we denote by ∇ the canonical connection of the normal bundle $Q=T M / L$ of \mathcal{F}. It is defined by

$$
\begin{equation*}
\nabla_{X} s=\pi\left(\left[X, Y_{s}\right]\right) \quad \text { for } X \in \Gamma L, \quad \nabla_{X} s=\pi\left(\nabla_{X}^{M} Y_{s}\right) \quad \text { for } X \in \Gamma L^{\perp}, \tag{2.1}
\end{equation*}
$$

where $s \in \Gamma Q$, and $Y_{s} \in \Gamma L^{\perp}$ corresponding to s under the canonical isomorphism $L^{\perp} \cong Q$. The connection ∇ is metric and torsion free. It corresponds to the Riemannian connection of the model space N [4]. The curvature R^{∇} of ∇ is defined by

$$
R_{X Y}^{\nabla}=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]} \text { for } X, Y \in T M
$$

Since $\mathrm{i}(X) R^{\nabla}=0$ for any $X \in \Gamma L[4]$, we can define the (transversal) Ricci curvature $\rho^{\nabla}: \Gamma Q \rightarrow \Gamma Q$ and the (transversal) scalar curvature σ^{∇} of \mathcal{F} by

$$
\rho^{\nabla}(s)=\sum_{a} R_{s E_{a}}^{\nabla} E_{a}, \quad \sigma^{\nabla}=\sum_{\alpha} g_{Q}\left(\rho^{\nabla}\left(E_{a}\right), E_{a}\right),
$$

where $\left\{E_{a}\right\}_{a=1, \ldots, q}$ is an orthonormal basis for Q. The foliation \mathcal{F} is said to be (transversally) Einsteinian if the model space N is Einsteinian, that is,

$$
\begin{equation*}
\rho^{\nabla}=\frac{1}{q} \sigma^{\nabla} \cdot \mathrm{id} \tag{2.2}
\end{equation*}
$$

with constant transversal scalar curvature σ^{∇}. The second fundamental form of α of \mathcal{F} is given by

$$
\begin{equation*}
\alpha(X, Y)=\pi\left(\nabla_{X}^{M} Y\right) \quad \text { for } X, Y \in \Gamma L \tag{2.3}
\end{equation*}
$$

It is trivial that α is Q-valued, bilinear and symmetric. The mean curvature vector field of \mathcal{F} is then defined by

$$
\begin{equation*}
\tau=\sum_{i} \alpha\left(E_{i}, E_{i}\right) \tag{2.4}
\end{equation*}
$$

where $\left\{E_{i}\right\}_{i=1, \ldots, p}$ is an orthonormal basis of L. The dual form κ, the mean curvature form for L, is then given by

$$
\begin{equation*}
\kappa(X)=g_{Q}(\tau, X) \quad \text { for } X \in \Gamma Q \tag{2.5}
\end{equation*}
$$

The foliation \mathcal{F} is said to be minimal (or harmonic) if $\kappa=0$.
Let $\Omega_{B}^{r}(\mathcal{F})$ be the space of all basic r-forms, i.e.,

$$
\Omega_{B}^{r}(\mathcal{F})=\left\{\phi \in \Omega^{r}(M) \mid \mathrm{i}(X) \phi=0, \theta(X) \phi=0 \text { for } X \in \Gamma L\right\} .
$$

The foliation \mathcal{F} is said to be isoparametric if $\kappa \in \Omega_{B}^{1}(\mathcal{F})$. We already know that κ is closed, i.e., $\mathrm{d} \kappa=0$ if \mathcal{F} is isoparametric [8]. Since the exterior derivative preserves the basic forms (that is, $\theta(X) \mathrm{d} \phi=0$ and $\mathrm{i}(X) \mathrm{d} \phi=0$ for $\phi \in \Omega_{B}^{r}(\mathcal{F})$), the restriction $d_{B}=\left.d\right|_{\Omega_{B}^{*}(\mathcal{F})}$ is well defined. Let δ_{B} be the adjoint operator of d_{B}. Then it is well known [3] that

$$
\begin{equation*}
d_{B}=\sum_{a} \theta^{a} \wedge \nabla_{E_{a}}, \quad \delta_{B}=-\sum_{a} \mathrm{i}\left(E_{a}\right) \nabla_{E_{a}}+\mathrm{i}\left(\kappa_{B}\right) \tag{2.6}
\end{equation*}
$$

where $\left\{E_{a}\right\}_{a=1, \ldots, q}$ is a local orthonormal basic frame in Q and $\left\{\theta^{a}\right\}$ its g_{Q}-dual 1-form. The basic Laplacian acting on $\Omega_{B}^{*}(\mathcal{F})$ is defined by

$$
\begin{equation*}
\Delta_{B}=d_{B} \delta_{B}+\delta_{B} d_{B} \tag{2.7}
\end{equation*}
$$

If \mathcal{F} is the foliation by points of M, the basic Laplacian is the ordinary Laplacian.
Further, \mathcal{F} is said to be a Kählerfoliation [7] if it is modeled on a Kähler manifold. Namely, by a Kähler foliation \mathcal{F} we mean a foliation satisfying the following conditions: (i) \mathcal{F} is Riemannian, with a bundle-like metric g_{M} on M inducing the holonomy invariant metric g_{Q} on $Q \equiv L^{\perp}$, (ii) there is a holonomy invariant almost complex structure $J: Q \rightarrow Q$, where $\operatorname{dim} Q=q(=2 n)$ (real dimension), with respect to which g_{Q} is Hermitian, i.e.,

$$
\begin{equation*}
g_{Q}(J X, J Y)=g_{Q}(X, Y) \tag{2.8}
\end{equation*}
$$

for $X, Y \in \Gamma Q$, and (iii) if ∇ is almost complex, i.e., $\nabla J=0$. Note that

$$
\begin{equation*}
\Omega(X, Y)=g_{Q}(X, J Y) \tag{2.9}
\end{equation*}
$$

defines a basic 2-form Ω, which is closed as a consequence of $\nabla g_{Q}=0$ and $\nabla J=0$. Then we can express the basic 2 -form Ω by

$$
\begin{equation*}
\Omega=\sum_{k=1}^{n} \theta^{2 k-1} \wedge \theta^{2 k} \tag{2.10}
\end{equation*}
$$

For a Kähler foliation, we have the following identities [7]:

$$
\begin{align*}
& R_{X Y}^{\nabla} J=J R_{X Y}^{\nabla}, \quad R_{J X J Y}^{\nabla}=R_{X Y}^{\nabla}, \tag{2.11}\\
& R_{X Y}^{\nabla} Z+R_{Y Z}^{\nabla} X+R_{Z X}^{\nabla} Y=0, \tag{2.12}
\end{align*}
$$

where X, Y and Z are elements of ΓQ. In the sequal it will be convenient to use the following orthonormal frame on M. For $x \in M$, let $\left\{e_{A}\right\}_{A=1, \ldots, p+q}$ be an oriented orthonormal basis of $T_{x} M$ with $\left\{e_{i}\right\}_{i=1, \ldots, p}$ in L_{x} and $\left\{e_{\alpha}, J e_{\alpha}\right\}_{\alpha=p+1, \ldots, p+n}$ in $L_{x}^{\perp}(\mathcal{F}$ is of codimension $q=2 n$
on M^{p+q}). The transversal Kähler property of \mathcal{F} allows then to extend $e_{\alpha}, J e_{\alpha}$ to local vector fields $E_{\alpha}, J E_{\alpha} \in \Gamma L^{\perp}$ such that

$$
\begin{array}{lc}
\left(\nabla_{E_{\alpha}} E_{\beta}\right)_{x}=0, & \left(\nabla_{E_{\alpha}} J E_{\beta}\right)_{x}=0, \\
\left(\nabla_{J E_{\alpha}} E_{\beta}\right)_{x}=0, & \left(\nabla_{J E_{\alpha}} J E_{\beta}\right)_{x}=0 . \tag{2.13}
\end{array}
$$

As a consequence of torsion freeness [4]

$$
\begin{equation*}
\left[E_{\alpha}, E_{\beta}\right]_{x}, \quad\left[E_{\alpha}, J E_{\beta}\right]_{x}, \quad\left[J E_{\alpha}, J E_{\beta}\right]_{x} \in L_{x} \tag{2.14}
\end{equation*}
$$

The $E_{\alpha}, J E_{\alpha}$ can be chosen as (local) infinitesimal automorphisms of \mathcal{F}, so that

$$
\begin{equation*}
\nabla_{X} E_{\alpha}=\pi\left[X, E_{\alpha}\right]=0 \quad \text { for } X \in \Gamma L . \tag{2.15}
\end{equation*}
$$

We can complete $E_{\alpha}, J E_{\alpha}$ by the Gram-Schmidt process to a moving local frame by adding $E_{i} \in \Gamma L$ with $\left(E_{i}\right)_{x}=e_{i}$.

An infinitesimal automorphism Y gives rise to a transversally holomorphic fields $=\pi(Y)$ if and only if

$$
\begin{equation*}
\theta(Y) J=0 \tag{2.16}
\end{equation*}
$$

where for $Z \in \Gamma L^{\perp},(\theta(Y) J)(Z)=\theta(Y)(J Z)-J(\theta(Y) Z)$. But this expression equals $\pi[Y, J Z]-J \pi[Y, Z]$, which yields the formula

$$
(\theta(Y) J)(Z)=-\nabla_{J Z s}+J \nabla_{Z} s
$$

so that (2.16) holds if and only if

$$
\begin{equation*}
\nabla_{J Z} s=J \nabla_{Z} s \quad \text { for all } Z \in \Gamma L^{\perp} \tag{2.17}
\end{equation*}
$$

3. The structures of the foliated spinor bundle of a Kähler spin foliation

In this section, we shall modify all the definitions and notations of Kirchberg's paper [5] for foliation. We first define the Kähler spin foliation. Let (M, g_{M}, \mathcal{F}) be a compact Riemannian manifold with a Kähler foliation \mathcal{F} of codimension $q=2 n$ and a bundle-like metric g_{M} with respect to \mathcal{F}. Let $\mathrm{SO}(q) \rightarrow P_{\text {so }} \rightarrow M$ be the principal bundle of (oriented) transverse orthonormal framings. The transverse spin structure [3] is a principal $\operatorname{Spin}(\mathrm{q})$-bundle $P_{\text {spin }}$ together with two sheeted covering $\xi: P_{\text {spin }} \rightarrow P_{\text {so }}$ such that $\xi(p \cdot g)=$ $\xi(p) \xi_{0}(g)$ for all $p \in P_{\text {spin }}, g \in \operatorname{Spin}(\mathrm{q})$, where $\xi_{0}: \operatorname{Spin}(\mathrm{q}) \rightarrow \mathrm{SO}(\mathrm{q})$ is a covering. The Riemannian foliation \mathcal{F} is called a Kähler spin foliation if \mathcal{F} is Kähler foliation with a transverse spin structure. The foliated spinor bundle $S(\mathcal{F})$ of the Kähler spin foliation \mathcal{F} is defined by

$$
S(\mathcal{F})=P_{\text {spin }} \times \operatorname{Spin}(q) S
$$

where S is the spinor space associated to Q, which is a Clifford module over the transversal Clifford algebra $\mathrm{Cl}(Q)$ of \mathcal{F}. The Hermitian scalar product \langle,$\rangle defined on S$ induces a Hermitian scalar product on $S(\mathcal{F})$, which we also denote by \langle,$\rangle . The sections of S(\mathcal{F})$ are called transversal spinor fields.

By the Clifford multiplication in the fibers of $S(\mathcal{F})$ for any vector field X in Q and any transversal spinor field ψ, the Clifford product $X \cdot \psi$, which is also a transversal spinor field, is defined. This product has the following properties: for all $X, Y \in \Gamma Q$ and $\phi, \psi \in \Gamma S(\mathcal{F})$,

$$
\begin{align*}
& (X \cdot Y+Y \cdot X) \psi=-2 g_{Q}(X, Y) \psi \tag{3.1}\\
& \langle X \cdot \psi, \phi\rangle+\langle\psi, X \cdot \phi\rangle=0 \tag{3.2}\\
& \nabla_{Y}(X \cdot \psi)=\left(\nabla_{Y} X\right) \cdot \psi+X \cdot\left(\nabla_{Y} \psi\right) \tag{3.3}
\end{align*}
$$

where ∇ is a metric covariant derivation on $S(\mathcal{F})$, i.e., for all $X \in \Gamma Q$, and all $\psi, \phi \in$ $\Gamma S(\mathcal{F})$, it holds

$$
\begin{equation*}
X\langle\psi, \phi\rangle=\left\langle\nabla_{X} \psi, \phi\right\rangle+\left\langle\psi, \nabla_{X} \phi\right\rangle . \tag{3.4}
\end{equation*}
$$

Moreover, if we define the Clifford product $\xi \cdot \psi$ of a 1 -form $\xi \in Q^{*}$ and a transversal spinor field ψ as

$$
\begin{equation*}
\xi \cdot \psi \equiv X_{\xi} \cdot \psi \tag{3.5}
\end{equation*}
$$

where $X_{\xi} \in \Gamma Q$ is a g_{Q}-dual vector of ξ, then any basic r-form can be considered as an endomorphism of $S(\mathcal{F})$. Namely, for any basic form $\omega=\sum_{i_{1}<\cdots<i_{r}} \omega_{i_{1} \cdots i_{r}} \theta^{i_{1}} \wedge \cdots \wedge \theta^{i_{r}}$, we define the Clifford product $\omega \phi$ locally by

$$
\begin{equation*}
\omega \phi=\sum \omega_{i_{1} \cdots i_{r}} \theta_{i_{1}} \cdots \theta_{i_{r}} \phi \tag{3.6}
\end{equation*}
$$

So for any basic r-form ω, the equation

$$
\begin{equation*}
\langle\omega \phi, \psi\rangle=(-1)^{r(r+1) / 2}\langle\phi, \omega \psi\rangle \tag{3.7}
\end{equation*}
$$

holds, i.e., the adjoint of ω^{*} is given by

$$
\begin{equation*}
\omega^{*}=(-1)^{r(r+1) / 2} \omega \tag{3.8}
\end{equation*}
$$

From (2.10) and (3.6), we know that

$$
\begin{equation*}
\Omega=-\frac{1}{2} \sum_{a} E_{a} \cdot J E_{a}=\frac{1}{2} \sum_{a} J E_{a} \cdot E_{a} \tag{3.9}
\end{equation*}
$$

where $\left\{E_{a}\right\}$ is a local orthonormal basic frame in Q. From (3.9), the relation

$$
\begin{equation*}
X \cdot \Omega-\Omega \cdot X=2 J X \quad \text { for } X \in \Gamma Q \tag{3.10}
\end{equation*}
$$

holds.
Lemma 3.1 (cf. [5]). On the Kähler spin foliation, the eigenvalues of $\Omega_{x}: S_{x}(\mathcal{F}) \rightarrow S_{x}(\mathcal{F})$ $(x \in M)$ are

$$
\begin{equation*}
\mu_{r}=(n-2 r) \mathrm{i}, \quad r=0, \ldots, n \tag{3.11}
\end{equation*}
$$

From (3.11), the foliated spinor bundle $S(\mathcal{F})$ of a Kähler spin foliation \mathcal{F} splits into the orthogonal direct sum

$$
\begin{equation*}
S(\mathcal{F})=S_{0} \oplus S_{1} \oplus \cdots \oplus S_{n} \tag{3.12}
\end{equation*}
$$

where the fiber $\left(S_{r}\right)_{x}$ of the subbundle S_{r} is just defined as the eigenspace corresponding to the eigenvalue μ_{r} of $\Omega_{x}: S_{x}(\mathcal{F}) \rightarrow S_{x}(\mathcal{F})$. The decomposition (3.12) is compatible with ∇, i.e., if ψ is a section of S_{r}, then $\nabla_{X} \psi$ is also a section of S_{r} for any vector field X.

Let $p_{r}: S(\mathcal{F}) \rightarrow S(\mathcal{F})(r=0, \ldots, n)$ be the projections corresponding to the decomposition (3.12). Then we have the following properties:

$$
\begin{align*}
& p_{r}^{2}=p_{r}, \quad p_{r} p_{s}=p_{s} p_{r}=0, \quad r \neq s, \quad \sum_{r=0}^{n} p_{r}=1, \tag{3.13}\\
& \left\langle p_{r} \psi, \phi\right\rangle=\left\langle\psi, p_{r} \phi\right\rangle, \quad \nabla p_{r}=0, \quad S_{r}=p_{r} S(\mathcal{F}) . \tag{3.14}
\end{align*}
$$

Hence we get

$$
\begin{equation*}
\Omega=\sum_{r=0}^{n} \mathrm{i}(n-2 r) p_{r} \tag{3.15}
\end{equation*}
$$

For any vector field $X \in \Gamma Q$, we have the relations

$$
\begin{align*}
& X p_{s}=p_{s-1} X p_{s}+p_{s+1} X p_{s} \tag{3.16}\\
& J(X) p_{s}=-\mathrm{i} p_{s-1} X p_{s}+\mathrm{i} p_{s+1} X p_{s}, \quad s \in \mathbb{N}, \tag{3.17}
\end{align*}
$$

where $p_{s}=0$ for $s \neq\{0,1, \ldots, n\}$.
Let $\iota: S(\mathcal{F}) \rightarrow S(\mathcal{F})$ be the bundle map defined by

$$
\begin{equation*}
\iota=\sum_{s=0}^{n} \mathrm{i}^{s} p_{s} \tag{3.18}
\end{equation*}
$$

Then ι has the properties

$$
\begin{equation*}
\iota^{*} \iota=1, \quad \iota^{2}=\iota^{* 2}, \quad \iota^{4}=1, \quad \iota^{3}=\iota^{*}, \quad \nabla \iota=0 . \tag{3.19}
\end{equation*}
$$

For any vector field $X \in \Gamma Q$, the equations

$$
\begin{equation*}
J(X) \iota=\iota X, \quad X \iota^{2}=-\iota^{2} X \tag{3.20}
\end{equation*}
$$

are satisfied. The proofs of the above equations are similar to the usual ones in Kähler geometry [5].

4. The transversal Dirac operators

Let \mathcal{F} be a Kähler spin foliation on a compact oriented manifold M. Then the transversal Dirac operator $D_{\mathrm{tr}}: \Gamma S(\mathcal{F}) \rightarrow \Gamma S(\mathcal{F})$ is locally given by [1-3]

$$
\begin{equation*}
D_{\mathrm{tr}} \phi=\sum_{a} E_{a} \cdot \nabla_{E_{a}} \phi-\frac{1}{2} \kappa \cdot \phi \quad \text { for } \phi \in \Gamma S(\mathcal{F}) \tag{4.1}
\end{equation*}
$$

where $\left\{E_{a}\right\}_{a=1, \ldots, 2 n}$ is a local orthonormal basic frame in Q. Let $\tilde{D}_{\text {tr }}$ be the operator which is locally defined by

$$
\begin{equation*}
\tilde{D}_{\mathrm{tr}} \phi=\sum_{a} J E_{a} \cdot \nabla_{E_{a}} \phi-\frac{1}{2} J \kappa \cdot \phi \quad \text { for } \phi \in \Gamma S(\mathcal{F}) . \tag{4.2}
\end{equation*}
$$

Using Green's theorem on the foliated Riemannian manifold [9], we know for any $\phi, \psi \in$ $\Gamma S(\mathcal{F})$

$$
\begin{equation*}
\int_{M}\left\langle D_{\mathrm{tr}} \phi, \psi\right\rangle=\int_{M}\left\langle\phi, D_{\mathrm{tr}} \psi\right\rangle, \quad \int_{M}\left\langle\tilde{D}_{\mathrm{tr}} \phi, \psi\right\rangle=\int_{M}\left\langle\phi, \tilde{D}_{\mathrm{tr}} \psi\right\rangle \tag{4.3}
\end{equation*}
$$

i.e., $D_{\text {tr }}$ and $\tilde{D}_{\text {tr }}$ are self-adjoint transversally elliptic operators. From $\nabla \iota=0$ and (3.20), we obtain

$$
\begin{equation*}
\tilde{D}_{\mathrm{tr}} \iota=\iota D_{\mathrm{tr}}, \quad \iota \tilde{D}_{\mathrm{tr}}=-D_{\mathrm{tr}} \iota \tag{4.4}
\end{equation*}
$$

From (4.4), we get

$$
\begin{equation*}
D_{\mathrm{tr}} l^{2}=-\iota^{2} D_{\mathrm{tr}}, \quad \tilde{D}_{\mathrm{tr}} l^{2}=-\iota^{2} \tilde{D}_{\mathrm{tr}} \tag{4.5}
\end{equation*}
$$

From (4.4) and (4.5), we have

$$
\begin{equation*}
D_{\mathrm{tr}}^{2} \iota=\iota \tilde{D}_{\mathrm{tr}}^{2}, \quad D_{\mathrm{tr}} l D_{\mathrm{tr}} \iota=\iota \tilde{D}_{\mathrm{tr}} \iota \tilde{D}_{\mathrm{tr}} \tag{4.6}
\end{equation*}
$$

Moreover, from (3.16) and (3.17) and their Hermitian adjoint equations, we have

$$
\begin{equation*}
p_{s} \tilde{D}_{\mathrm{tr}}-\tilde{D}_{\mathrm{tr}} p_{s-1}=-\mathrm{i}\left(p_{s} D_{\mathrm{tr}}-D_{\mathrm{tr}} p_{s-1}\right), \quad s \in \mathbb{N} \tag{4.7}
\end{equation*}
$$

We now define $\nabla_{\mathrm{tr}}^{*} \nabla: \Gamma S(\mathcal{F}) \rightarrow \Gamma S(\mathcal{F})$ as

$$
\begin{equation*}
\nabla_{\mathrm{tr}}^{*} \nabla_{\mathrm{tr}} \phi=-\sum_{a} \nabla_{E_{a}, E_{a}}^{2} \phi+\nabla_{\kappa} \phi \tag{4.8}
\end{equation*}
$$

where $\nabla_{V, W}^{2}=\nabla_{V} \nabla_{W}-\nabla_{\nabla_{V} W}$ for $V, W \in T M$. Then we have the following proposition.
Proposition 4.1. (see [3]). For all $\phi, \psi \in \Gamma S(\mathcal{F})$,

$$
\begin{equation*}
\int_{M}\left\langle\nabla_{\mathrm{tr}}^{*} \nabla_{\mathrm{tr}} \phi, \psi\right\rangle=\int_{M}\left\langle\nabla_{\mathrm{tr}} \phi, \nabla_{\mathrm{tr}} \psi\right\rangle \tag{4.9}
\end{equation*}
$$

If \mathcal{F} is isoparametric, i.e., $\kappa \in \Omega_{B}^{1}$, then we have [3]

$$
\begin{equation*}
D_{\mathrm{tr}}^{2} \phi=\nabla_{\mathrm{tr}}^{*} \nabla_{\mathrm{tr}} \phi+\frac{1}{4} \sigma_{\nabla} \phi+K_{\nabla} \phi \tag{4.10}
\end{equation*}
$$

where $K_{\nabla}=(1 / 2)\left\{-\delta \kappa+(1 / 2)|\kappa|^{2}\right\}$. By direct calculation, we also have

$$
\begin{equation*}
\tilde{D}_{\mathrm{tr}}^{2} \phi=\nabla_{\mathrm{tr}}^{*} \nabla_{\mathrm{tr}} \phi+\frac{1}{4} \sigma_{\nabla} \phi-\frac{1}{4}|\kappa|^{2} \phi-\frac{1}{2} \sum_{a} J E_{a} \cdot J\left(\nabla_{E_{a}} \kappa\right) \cdot \phi \tag{4.11}
\end{equation*}
$$

If κ is a transversally holomorphic (see (2.16)), we have, from the definition of Clifford multiplication and (2.6),

$$
\sum_{a} J E_{a} \cdot J\left(\nabla_{E_{a}} \kappa\right)=\sum_{a} J E_{a} \cdot \nabla_{J E_{a}} \kappa=d_{B} \kappa+\delta_{B} \kappa-|\kappa|^{2}
$$

If \mathcal{F} is an isoparametric, κ is already closed, i.e., $\mathrm{d} \kappa=0$ [8]. So we have

$$
\begin{equation*}
\tilde{D}_{\mathrm{tr}}^{2} \phi=\nabla_{\mathrm{tr}}^{*} \nabla_{\mathrm{tr}} \phi+\frac{1}{4} \sigma_{\nabla} \phi+K_{\nabla} \phi \tag{4.12}
\end{equation*}
$$

Then we have the following proposition.

Proposition 4.2. Let $\left(M, g_{M}, \mathcal{F}\right)$ be a Riemannian manifold with a Kähler spin foliation \mathcal{F} and a bundle-like metric g_{M} with $\kappa \in \Omega_{B}^{1}(\mathcal{F})$. Suppose the mean curvature of \mathcal{F} is a transversally holomorphic. Then we have

$$
D_{\mathrm{tr}}^{2}=\tilde{D}_{\mathrm{tr}}^{2}, \quad D_{\mathrm{tr}} \tilde{D}_{\mathrm{tr}}+\tilde{D}_{\mathrm{tr}} D_{\mathrm{tr}}=0
$$

Proof. The first equation is trivial from (4.10) and (4.12). Next, fix $x \in M$ and choose an orthonormal basic frame $\left\{E_{a}\right\}$ with the property that $\left(\nabla E_{a}\right)_{x}=0$ for all a. Then we have at the point x that for any $\phi \in \Gamma S(\mathcal{F})$,

$$
\begin{aligned}
D_{\mathrm{tr}} \tilde{D}_{\mathrm{tr}} \phi= & D_{\mathrm{tr}}\left(\sum_{a} J E_{a} \cdot \nabla_{E_{a}} \phi-\frac{1}{2} J \kappa \cdot \phi\right) \\
= & \sum_{a, b} E_{b} \cdot \nabla_{E_{b}}\left(J E_{a} \cdot \nabla_{E_{a}} \phi\right)-\frac{1}{2} \kappa \cdot J E_{a} \cdot \nabla_{E_{a}} \phi-\frac{1}{2} D_{\mathrm{tr}}(J \kappa \cdot \phi) \\
= & \sum_{a, b} E_{b} \cdot J E_{a} \cdot \nabla_{E_{b}} \nabla_{E_{a}} \phi-\frac{1}{2} \kappa \cdot J E_{a} \cdot \nabla_{E_{a}} \phi \\
& -\frac{1}{2}\left\{d_{B}(J \kappa)+\delta_{B}(J \kappa)+\sum_{a} E_{a} \cdot J \kappa \cdot \nabla_{E_{a}} \phi-\frac{1}{2} \kappa \cdot J \kappa \cdot \phi\right\} .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
\tilde{D}_{\mathrm{tr}} D_{\mathrm{tr}}= & \sum_{a, b} J E_{a} \cdot E_{b} \cdot \nabla_{E_{a}} \nabla_{E_{b}} \phi-\frac{1}{2} J \kappa \cdot E_{a} \cdot \nabla_{E_{a}} \phi \\
& -\frac{1}{2}\left\{-d_{B}(J \kappa)-\delta_{B}(J \kappa)+\sum_{a} J E_{a} \cdot \kappa \cdot \nabla_{E_{a}} \phi-\frac{1}{2} J \kappa \cdot \kappa \cdot \phi\right\} .
\end{aligned}
$$

Since $X \cdot Y+Y \cdot X=-2 g_{Q}(X, Y)$ and g_{Q} is Hermitian, we have

$$
\begin{aligned}
\left(D_{\mathrm{tr}} \tilde{D}_{\mathrm{tr}}+\tilde{D}_{\mathrm{tr}} D_{\mathrm{tr}}\right) \phi= & \sum_{a, b}\left(E_{b} \cdot J E_{a}+J E_{b} \cdot E_{a}\right) \nabla_{E_{b}} \nabla_{E_{a}} \phi \\
= & \sum_{a, b}\left(J E_{b} \cdot J E_{a}-E_{b} \cdot E_{a}\right) \nabla_{J E_{b}} \nabla_{E_{a}} \phi \\
= & \sum_{a, b}\left(-J E_{a} \cdot J E_{b}+E_{a} \cdot E_{b}\right) \nabla_{J E_{b}} \nabla_{E_{a}} \phi \\
= & \sum_{a, b}\left(-J E_{a} \cdot J E_{b}+E_{a} \cdot E_{b}\right)\left(\nabla_{E_{a}} \nabla_{J E_{b}} \phi+R^{S}\left(J E_{b}, E_{a}\right) \phi\right) \\
= & -\sum_{a, b}\left(J E_{a} \cdot E_{b}+E_{a} \cdot J E_{b}\right) \nabla_{E_{a}} \nabla_{E_{b}} \phi \\
& -\sum_{a, b}\left(J E_{a} \cdot E_{b}+E_{a} \cdot J E_{b}\right) R^{S}\left(E_{b}, E_{a}\right) \phi \\
= & -\left(D_{\mathrm{tr}} \tilde{D}_{\mathrm{tr}}+\tilde{D}_{\mathrm{tr}} D_{\mathrm{tr}}\right) \phi .
\end{aligned}
$$

This finishes the proof.

From (4.6), we have the following corollary.
Corollary 4.3. On an isoparametric Kähler spin foliation \mathcal{F} with a transversally holomorphic mean curvature κ, we have

$$
D_{\mathrm{tr}}^{2} \iota=\iota D_{\mathrm{tr}}^{2}, \quad D_{\mathrm{tr}} l D_{\mathrm{tr}} \iota=\iota D_{\mathrm{tr}} \iota D_{\mathrm{tr}}
$$

5. Eigenvalue estimate

Let $\left(M, g_{M}, \mathcal{F}\right)$ be a compact Riemannian manifold with a Kähler spin foliation \mathcal{F} of codimension $q=2 n$ and a bundle-like metric g_{M} with respect to \mathcal{F}. On the foliated spinor bundle $S(\mathcal{F})$, we introduce a new connection of the form

$$
\begin{equation*}
\stackrel{f g}{\nabla}_{X} \phi=\nabla_{X} \phi+f \pi(X) \cdot \phi+\mathrm{i} g J \pi(X) \cdot \iota^{2} \phi \quad \text { for } \quad X \in T M, \tag{5.1}
\end{equation*}
$$

where f, g are real valued basic functions on M and $\pi: T M \rightarrow Q$. Trivially, this connection $\nabla^{f g}$ is a metrical connection. Moreover, we have the following lemma.

Lemma 5.1. Let $\left(M, g_{M}, \mathcal{F}\right)$ be a compact Riemannian manifold with a Kähler foliation \mathcal{F} and a bundle-like metric g_{M} with respect to \mathcal{F}. Then,

$$
\stackrel{f g}{\left.\left\langle g \nabla_{\mathrm{tr}}^{*} \stackrel{f g}{\mathrm{tr}} \phi, \psi\right\rangle\right\rangle=\left\langle\left\langle\stackrel{f g}{\nabla}_{\mathrm{tr}} \phi, \stackrel{f g}{\nabla_{\mathrm{tr}}} \psi\right\rangle\right\rangle}
$$

for all $\phi, \psi \in \Gamma S$, where $\langle\langle\phi, \psi\rangle\rangle=\int_{M}\langle\phi, \psi\rangle$ is the Hermitian inner product on $S(\mathcal{F})$.
Proof. Fix $x \in M$ and choose an orthonormal basic frame $\left\{E_{a}\right\}$ such that $\left(\nabla E_{a}\right)_{x}=0$ for all a. Then we have that at x,

$$
\begin{aligned}
& -\sum_{a} E_{a}\left\langle f E_{a} \phi, \psi\right\rangle-\sum_{a} E_{a}\left\langle\mathrm{i} g J E_{a} \cdot \iota^{2} \phi, \psi\right\rangle+\sum_{a}\left\langle\stackrel{f g}{\nabla} E_{a} \phi, \stackrel{f g}{\nabla} E_{a} \psi\right\rangle \\
& +\left\langle\nabla_{\kappa} \phi, \psi\right\rangle+\langle f \kappa \cdot \phi, \psi\rangle+\left\langle\mathrm{i} g J_{\kappa} \cdot \iota^{2} \phi, \psi\right\rangle=-\operatorname{div}_{\nabla} U
\end{aligned}
$$

$$
\begin{aligned}
& +\langle f \kappa \cdot \phi, \psi\rangle+\left\langle\mathrm{i} g J \kappa \cdot \iota^{2} \phi, \psi\right\rangle,
\end{aligned}
$$

where $U, V, W \in \Gamma Q \otimes \mathbb{C}$ are defined by the conditions that $g_{Q}(U, Z)=\left\langle\nabla_{Z} \phi, \psi\right\rangle$, $g_{Q}(f V, Z)=\langle f Z \cdot \phi, \psi\rangle$ and $g_{Q}(g W, Z)=\left\langle g J Z \cdot \iota^{2} \phi, \psi\right\rangle$ for all $Z \in \Gamma Q$. The last line is proved as follows. At $x \in M$,

$$
\operatorname{div}_{\nabla}(U)=\sum_{a} g_{Q}\left(\nabla_{E_{a}} U, E_{a}\right)=\sum_{a} E_{a} g_{Q}\left(U, E_{a}\right)=\sum_{a} E_{a}\left\langle\nabla_{E_{a}} \phi, \psi\right\rangle
$$

Similarly, we have that

$$
\operatorname{div}_{\nabla}(f V)=\sum_{a} E_{a}\left\langle f E_{a} \cdot \phi, \psi\right\rangle, \quad \operatorname{div}_{\nabla}(g W)=\sum_{a} E_{a}\left\langle g J E_{a} \cdot \iota^{2} \phi, \psi\right\rangle
$$

By the Green's theorem on the foliated Riemannian manifold [9],

$$
\begin{equation*}
\int_{M} \operatorname{div}_{\nabla}(V)=\langle\langle\kappa, V\rangle\rangle=\left\langle\left\langle\nabla_{\kappa} \phi, \psi\right\rangle\right\rangle . \tag{5.2}
\end{equation*}
$$

Similarly, we have

$$
\int_{M} \operatorname{div}_{\nabla}(f V)=\langle\langle f \kappa \cdot \phi, \psi\rangle\rangle, \quad \int_{M} \operatorname{div}_{\nabla}(g W)=\left\langle\left\langle g J^{\prime} \kappa \cdot \iota^{2} \phi, \psi\right\rangle\right\rangle .
$$

By integrating, we obtain our result.
On the other hand, by direct calculation, we have

$$
\begin{aligned}
{\stackrel{f g}{\nabla_{\mathrm{tr}}^{*}} f_{\mathrm{tr}} \phi}^{f g}= & -\sum_{a} \stackrel{f g}{\nabla_{E_{a}}}{ }_{\mathrm{f}}^{\nabla_{E_{a}}} \phi+\stackrel{f g}{\nabla_{\kappa}} \boldsymbol{f}=-\sum_{a} \nabla_{E_{a}} \nabla_{E_{a}} \phi+\nabla_{\kappa} \phi \\
& -2 f \sum_{a} E_{a} \cdot \nabla_{E_{a}} \phi+2 \mathrm{i} g \iota^{2} \sum_{a} J E_{a} \cdot \nabla_{E_{a}} \phi-f^{2} \sum_{a} E_{a} \cdot E_{a} \cdot \phi \\
& +g^{2} \sum_{a} J E_{a} \iota^{2} J E_{a} \iota^{2} \phi-2 \mathrm{i} f g \sum_{a} E_{a} \cdot J E_{a} \iota^{2} \phi-\sum_{a} E_{a}(f) E_{a} \phi \\
& -\mathrm{i} \sum_{a} E_{a}(g) J E_{a} \iota^{2} \phi+f \kappa \cdot \phi+\mathrm{i} g J \kappa \cdot \iota^{2} \phi .
\end{aligned}
$$

From this equation, we obtain

$$
\begin{aligned}
\stackrel{f g}{\nabla_{\mathrm{tr}}^{*} \nabla_{\mathrm{tr}} \phi=} & \nabla_{\mathrm{tr}}^{*} \nabla_{\mathrm{tr}} \phi-2 f D_{\mathrm{tr}} \phi+2 \mathrm{i} g \iota^{2} \tilde{D}_{\mathrm{tr}} \phi+q\left(f^{2}+g^{2}\right) \phi \\
& +4 \mathrm{i} f g \Omega \iota^{2} \phi-\operatorname{grad}_{\nabla}(f) \cdot \phi-\mathrm{i} J\left(\operatorname{grad}_{\nabla}(g)\right) \cdot \iota^{2} \phi,
\end{aligned}
$$

where $\operatorname{grad}_{\nabla}(f)=\sum_{a} E_{a}(g) E_{a}$ is a transversal gradient of f. From (4.10), we get

$$
\begin{align*}
\stackrel{f g}{\nabla_{\mathrm{tr}}^{*} \nabla_{\mathrm{tr}} \phi=} & D_{\mathrm{tr}}^{2} \phi-2 f D_{\mathrm{tr}} \phi+2 \mathrm{i} g \iota^{2} \tilde{D}_{\mathrm{tr}} \phi+4 \mathrm{i} f g \Omega \iota^{2} \phi-\operatorname{grad}_{\nabla}(f) \cdot \phi \\
& -\mathrm{i} J\left(\operatorname{grad}_{\nabla}(g)\right) \cdot \iota^{2} \phi+\left\{q\left(f^{2}+g^{2}\right)-\frac{1}{4} \sigma_{\nabla}-K_{\nabla}\right\} \phi . \tag{5.3}
\end{align*}
$$

Let $E_{\lambda}\left(D_{\mathrm{tr}}\right)$ be the eigenspace of the transversal Dirac operator D_{tr} corresponding to the eigenvalue λ. Let $\phi \in E_{\lambda}\left(D_{\mathrm{tr}}\right)$. Then we have

$$
\begin{align*}
\left\|g{ }_{\mathrm{tr}}^{f} \phi\right\|^{2}= & \lambda^{2}\|\phi\|^{2}-2 f \lambda\|\phi\|^{2}+2 g\left\langle\left\langle\mathrm{i} \tilde{D}_{\mathrm{tr}} \phi, \iota^{2} \phi\right\rangle\right\rangle+4 f g\left\langle\left\langle\mathrm{i} \Omega \phi, \iota^{2} \phi\right\rangle\right\rangle \\
& -\left\langle\left\langle\operatorname{grad}_{\nabla}(f) \phi, \phi\right\rangle\right\rangle-\mathrm{i}\left\langle\left\langle J\left(\operatorname{grad}_{\nabla}(g)\right) \iota^{2} \phi, \phi\right\rangle\right\rangle \\
& +\left\{q\left(f^{2}+g^{2}\right)-\frac{1}{4} \sigma_{\nabla}-K_{\nabla}\right\}\|\phi\|^{2} . \tag{5.4}
\end{align*}
$$

From (4.4)-(4.6), we have the following lemma.

Lemma 5.2 (cf. [5]). Let $\phi \in E_{\lambda}\left(D_{\text {tr }}\right)$. Then $f_{\lambda}: E_{\lambda}\left(D_{\text {tr }}\right) \rightarrow E_{\lambda}\left(D_{\text {tr }}\right)$ defined by

$$
f_{\lambda}(\phi)=\left(D_{\mathrm{tr}}+\lambda\right) \iota^{*} \phi
$$

satisfies

$$
\begin{equation*}
f_{\lambda}^{4}+4 \lambda^{4}=0 \tag{5.5}
\end{equation*}
$$

The above equation shows that the eigenspace $E_{\lambda}\left(D_{\mathrm{tr}}\right)$ is decomposed as

$$
\begin{equation*}
E_{\lambda}\left(D_{\mathrm{tr}}\right)=\oplus_{\ell=0}^{3} E_{\lambda}^{\ell}\left(D_{\mathrm{tr}}\right) \tag{5.6}
\end{equation*}
$$

where $E_{\lambda}^{\ell}\left(D_{\text {tr }}\right)=\left\{\phi \in E_{\lambda}\left(D_{\text {tr }}\right) \mid f_{\lambda} \phi=\mathrm{i}^{\ell}(1+\mathrm{i}) \lambda \phi\right\}(\ell=0,1,2,3)$. A corollary of Lemma 5.2 is the following proposition.

Proposition 5.3 (cf. [5]). For any nonzero $\phi \in E_{\lambda}^{\ell}\left(D_{\text {tr }}\right)$, we have

$$
\begin{equation*}
\tilde{D}_{\mathrm{tr}} \phi=\lambda\left(\mathrm{i}^{\ell}(1+\mathrm{i}) \iota-1\right) \phi \tag{5.7}
\end{equation*}
$$

From (4.7) and (5.7), we have the following proposition.
Proposition 5.4 (cf. [5]). For any nonzero $\phi \in E_{\lambda}^{\ell}\left(D_{\mathrm{tr}}\right)$, we have

$$
\begin{equation*}
\left\|p_{4 s-\ell-1} \phi\right\|=\left\|p_{4 s-\ell} \phi\right\|, \quad p_{4 s-\ell+1} \phi=p_{4 s-\ell+2} \phi=0, \quad s \in \mathbb{N} \cup\{0\} . \tag{5.8}
\end{equation*}
$$

From (3.15), (5.7) and (5.8), we have the following corollary.
Corollary 5.5 (cf. [5]). For $\phi \in E_{\lambda}^{\ell}\left(D_{\text {tr }}\right)$,

$$
\left\langle\left\langle\mathrm{i} \tilde{D}_{\mathrm{tr}} \phi, \iota^{2} \phi\right\rangle\right\rangle=(-1)^{\ell+1} \lambda\|\phi\|^{2}, \quad\left\langle\left\langle\mathrm{i} \Omega \phi, \iota^{2} \phi\right\rangle\right\rangle=(-1)^{\ell}\|\phi\|^{2}
$$

Note that for all $X \in \Gamma Q$ and $\phi \in \Gamma S$,

$$
\begin{align*}
\langle X \cdot \phi, \phi\rangle & =\overline{\langle\phi, X \cdot \phi\rangle}=-\overline{\langle X \cdot \phi, \phi\rangle} \tag{5.9}\\
\left\langle J X \iota^{2} \phi, \phi\right\rangle & =\overline{\left\langle\phi, J X \iota^{2} \phi\right\rangle}=-\overline{\left\langle J X \cdot \phi, \iota^{2} \phi\right\rangle}=-\overline{\left\langle\iota^{2} J X \cdot \phi, \phi\right\rangle}=\overline{\left\langle J X \iota^{2} \phi, \phi\right\rangle} . \tag{5.10}
\end{align*}
$$

So we know that $\left\langle\operatorname{grad}_{\nabla}(f) \phi, \phi\right\rangle$ and $\mathrm{i}\left\langle J\left(\operatorname{grad}_{\nabla}(g)\right) \iota^{2} \phi, \phi\right\rangle$ are purely imaginary. Hence if we combine (5.4) and Corollary 5.5, then we have, for $\phi \in E_{\lambda}^{\ell}\left(D_{\text {tr }}\right)$,

$$
\begin{align*}
& \left\|\nabla_{\mathrm{tr}}^{f g} \phi\right\|^{2}=\int_{M}\left(F(x, y) \lambda^{2}-\frac{1}{4} \sigma_{\nabla}-K_{\nabla}\right)|\phi|^{2}, \tag{5.11}\\
& \left\langle\left\langle\operatorname{grad}_{\nabla}(f) \phi, \phi\right\rangle\right\rangle+\mathrm{i}\left\langle\left\langle J\left(\operatorname{grad}_{\nabla}(g)\right) \iota^{2} \phi, \phi\right\rangle\right\rangle=0, \tag{5.12}
\end{align*}
$$

where $f=\lambda x, g=\lambda y$ and $F(x, y)=q x^{2}+q y^{2}+4(-1)^{\ell} x y-2 x-2(-1)^{\ell} y+1$.
It is straightforward to notice the following lemma.
Lemma 5.6. The polynomial F has its minimum $q /(q+2)$ at the point $(1 /(q+2)$, $\left.(-1)^{\ell} /(q+2)\right)$.

Now we assume that the mean curvature κ of \mathcal{F} satisfies $\delta \kappa=0$. And if we put $f=\lambda /(q+2)$ and $g=(-1)^{\ell} \lambda /(q+2)$, then (5.11) takes the form

$$
\begin{equation*}
\left\|\stackrel{f g}{\mathrm{tr}}_{f g}\right\|^{2}=\int_{M}\left(\frac{q}{q+2} \lambda^{2}-\frac{1}{4} K_{\sigma}\right)|\phi|^{2}, \tag{5.13}
\end{equation*}
$$

where $K_{\sigma}=\sigma^{\nabla}+|\kappa|^{2}$. From (5.13), we have the following theorem.
Theorem 5.7. Let $\left(M, g_{M}, \mathcal{F}\right)$ be a compact Riemannian manifold with a Kähler spin foliation \mathcal{F} of codimension $q=2 n$ and a bundle-like metric g_{M} with $\kappa \in \Omega_{B}^{1}(\mathcal{F})$. Assume that the mean curvature κ of \mathcal{F} satisfies $\delta \kappa=0$ and transversally holomorphic. If $K_{\sigma} \geq 0$, then the eigenvalue λ of $D_{\text {tr }}$ satisfies

$$
\lambda^{2} \geq \frac{q+2}{4 q} K_{\sigma}^{0}
$$

where $K_{\sigma}^{0}=\min K_{\sigma}$.
Remark 5.8. If \mathcal{F} is a point foliation, then the transversal Dirac operator is just a Dirac operator on a Kähler manifold. Therefore, Theorem 5.7 is a generalization of the result on a Kähler manifold (cf. [5]).

Remark 5.9. The estimation of the eigenvalue of the transversal Dirac operator on a Kähler spin foliation is a sharper one than the estimation (1.1).

6. The limiting case

In this section, we study the Kähler spin foliation which admits a nonzero transversal spinor ϕ_{1} such that $D_{\text {tr }} \phi_{1}=\lambda_{1} \phi_{1}$ with $\lambda_{1}=((q+2) / 4 q) K_{\sigma}^{0}$. From (5.13), we have that for any $\phi_{1} \in E_{\lambda_{1}}^{\ell}\left(D_{\text {tr }}\right)$

$$
\begin{equation*}
\left\|\nabla_{\mathrm{tr}}^{f} \phi_{1}\right\|^{2}=\int_{M} \frac{1}{4}\left(K_{\sigma}^{0}-K_{\sigma}\right)\left|\phi_{1}\right|^{2} \tag{6.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla_{X}^{f} \phi=\nabla_{X} \phi+f \pi(X) \phi+\mathrm{i}(-1)^{\ell} f J \pi(X) \iota^{2} \phi . \tag{6.2}
\end{equation*}
$$

From this equation, we have

$$
\begin{equation*}
K_{\sigma}=K_{\sigma}^{0} \quad \text { and } \quad \nabla_{\text {tr }}^{f} \phi_{1}=0 \tag{6.3}
\end{equation*}
$$

From the first equation in (6.3), if the transversal scalar curvature σ_{∇} is nonnegative, we know that

$$
\begin{equation*}
\sigma_{\nabla}=\text { constant } \quad \text { and } \quad|\kappa|=\text { constant } . \tag{6.4}
\end{equation*}
$$

From the second equation in (6.3), we have

$$
\sum_{a} E_{a} \cdot \nabla_{E_{a}} \phi_{1}+f \sum_{a} E_{a} \cdot E_{a} \cdot \phi_{1}+\mathrm{i}(-1)^{\ell} f \sum_{a} E_{a} \cdot J E_{a} \iota^{2} \phi_{1}=0,
$$

where $\left\{E_{a}\right\}$ is an orthonormal basic frame on Q. From this equation, we have

$$
D_{\mathrm{tr}} \phi_{1}+\frac{1}{2} \kappa \cdot \phi_{1}-q f \phi_{1}-2 \mathrm{i}(-1)^{\ell} \Omega \iota^{2} \phi_{1}=0
$$

Since $D_{\mathrm{tr}} \phi_{1}=\lambda_{1} \phi_{1}$ and $f=\lambda_{1} /(q+2)$, we have

$$
\begin{equation*}
\left(1-\mathrm{i}(-1)^{\ell} \Omega \iota^{2}\right) \phi_{1}=-\frac{1}{4 f} \kappa \cdot \phi_{1} . \tag{6.5}
\end{equation*}
$$

From the second equation in (6.3), we also have

$$
\sum_{a} J E_{a} \cdot \nabla_{E_{a}} \phi_{1}+f \sum_{a} J E_{a} \cdot E_{a} \cdot \phi_{1}+\mathrm{i}(-1)^{\ell} f \sum_{a} J E_{a} \cdot J E_{a} \iota^{2} \phi_{1}=0 .
$$

This equation implies that

$$
\tilde{D}_{\mathrm{tr}} \phi_{1}+\frac{1}{2} J \kappa \cdot \phi_{1}+2 f \Omega \phi_{1}-\mathrm{i}(-1)^{\ell} q f_{\iota}^{2} \phi_{1}=0
$$

From (5.7), we have

$$
\begin{equation*}
(q+2) f\left(\mathrm{i}^{\ell}(1+\mathrm{i}) \iota-1\right) \phi_{1}+\frac{1}{2} J \kappa \cdot \phi_{1}+2 f \Omega \phi_{1}-\mathrm{i}(-1)^{\ell} q f \iota^{2} \phi_{1}=0 \tag{6.6}
\end{equation*}
$$

By applying ι^{2} to (6.7) and using (3.20), we get

$$
\begin{equation*}
(q+2) f\left(\mathrm{i}^{\ell}(1+\mathrm{i}) \iota-1\right) \iota^{2} \phi_{1}-\frac{1}{2} J \kappa \iota^{2} \phi_{1}+2 f \Omega \iota^{2} \phi_{1}-\mathrm{i}(-1)^{\ell} q f \phi_{1}=0 \tag{6.7}
\end{equation*}
$$

Hence this equation is equivalent to

$$
\begin{equation*}
\left(1-\mathrm{i}(-1)^{\ell} \Omega \iota^{2}\right) \phi_{1}=\frac{q+2}{2}\left\{1-\mathrm{i}(-1)^{\ell}\left(1-\mathrm{i}^{\ell}(1+\mathrm{i}) \iota \iota^{2}\right\} \phi_{1}-\mathrm{i} \frac{(-1)^{\ell}}{4 f} J \kappa \iota^{2} \phi_{1}\right. \tag{6.8}
\end{equation*}
$$

From (5.8), we obtain

$$
\left\{1-\mathrm{i}(-1)^{\ell}\left(1-\mathrm{i}^{\ell}(1+\mathrm{i}) \iota\right) \iota^{2}\right\} \phi_{1}=0
$$

Hence the formula (6.8) is equivalent to

$$
\begin{equation*}
\left(1-\mathrm{i}(-1)^{\ell} \Omega \iota^{2}\right) \phi_{1}=-\mathrm{i} \frac{(-1)^{\ell}}{4 f} J \kappa \cdot \iota^{2} \phi_{1} \tag{6.9}
\end{equation*}
$$

Combining (6.5) with (6.9), we have

$$
\begin{equation*}
J \kappa \cdot \phi_{1}=\mathrm{i}(-1)^{\ell+1} \kappa \cdot \phi_{1} \tag{6.10}
\end{equation*}
$$

By long calculation, we have that for $X \in \Gamma Q$ and $\phi \in E_{\lambda}^{\ell}\left(D_{\text {tr }}\right)$

$$
\begin{align*}
\sum_{a} E_{a} \cdot R_{X E_{a}}^{f} \phi= & \sum_{a} E_{a} \cdot R_{X E_{a}}^{S} \phi+2(q+2) f^{2} X \\
& +4 \mathrm{i}(-1)^{\ell} f^{2} J X \iota^{2}\left(1-\mathrm{i}(-1)^{\ell} \Omega \iota^{2}\right) \phi \tag{6.11}
\end{align*}
$$

where R^{f} is a curvature tensor of ∇^{f} and R^{S} a curvature tensor of ∇ on $S(\mathcal{F})$ which is given by [6]

$$
R_{X Y}^{S} \phi=\frac{1}{4} \sum_{a, b} g_{Q}\left(R_{X Y}^{\nabla} E_{a}, E_{b}\right) E_{a} \cdot E_{b} \cdot \phi \quad \text { for } \quad X, Y \in T M .
$$

If $\nabla^{f} \phi=0$, then $R_{X Y}^{f} \phi=0$. Hence we have that for any $\phi \in E_{\lambda}^{\ell}\left(D_{\text {tr }}\right)$

$$
\begin{equation*}
\sum_{a} E_{a} \cdot R^{S}\left(X, E_{a}\right) \phi=-f^{2}\left\{2(q+2) X+4 \mathrm{i}(-1)^{\ell} J X \iota^{2}\left(1-\mathrm{i}(-1)^{\ell} \Omega \iota^{2}\right)\right\} \phi, \tag{6.12}
\end{equation*}
$$

where $\left\{E_{a}\right\}_{a=1, \ldots, q}$ is an orthonormal basic frame of Q.
If we substitute (6.9) into (6.12), then we get that for any $\phi \in E_{\lambda}^{\ell}\left(D_{\text {tr }}\right)$

$$
\begin{equation*}
\sum_{a} E_{a} \cdot R^{S}\left(X, E_{a}\right) \phi=-f^{2}\left\{2(q+2) X-\frac{1}{f} J X \cdot J \kappa\right\} \phi \tag{6.13}
\end{equation*}
$$

On the foliated spinor bundle $S(\mathcal{F})$, we have [6] that for any $\phi \in E_{\lambda}^{\ell}\left(D_{\text {tr }}\right)$

$$
\begin{equation*}
\sum_{a} E_{a} R^{S}\left(X, E_{a}\right) \phi=-\frac{1}{2} \rho^{\nabla}(X) \cdot \phi \quad \text { for } X \in \Gamma Q \tag{6.14}
\end{equation*}
$$

If we compare (6.13) with (6.14), then we obtain

$$
\begin{equation*}
\rho^{\nabla}(X)=4 f^{2}(q+2) X-2 f J X \cdot J \kappa \quad \text { for } X \in \Gamma Q . \tag{6.15}
\end{equation*}
$$

From (6.15), we have

$$
\left\langle\rho^{\nabla}(\kappa) \cdot \phi, \phi\right\rangle=4 f^{2}(q+2)\langle\kappa \cdot \phi, \phi\rangle-2 f|\kappa|^{2}\langle\phi, \phi\rangle
$$

From (5.9), the left-hand side is purely imaginary. Hence we have

$$
\begin{equation*}
|\kappa|^{2}\langle\phi, \phi\rangle=0 . \tag{6.16}
\end{equation*}
$$

Because $\phi \neq 0$ at some point $x \in M$, this implies that $|\kappa|(x)=0$ and then from (6.4), $|\kappa|=0$ for any $x \in M$. That is, the foliation \mathcal{F} is minimal. So (6.15) implies that

$$
\begin{equation*}
\rho^{\nabla}(X)=4 f^{2}(q+2) X \quad \text { for } X \in \Gamma Q . \tag{6.17}
\end{equation*}
$$

This implies that the \mathcal{F} is a transversally Einsteinian.
On the other hand, since \mathcal{F} is minimal, from (6.9), we have

$$
\begin{equation*}
\left(1-\mathrm{i}(-1)^{\ell} \Omega \iota^{2}\right) \phi_{1}=0 \tag{6.18}
\end{equation*}
$$

From the definition (3.18) of ι and (3.15), we have

$$
\begin{equation*}
0=\left(1-\mathrm{i}(-1)^{\ell} \Omega \iota^{2}\right) \phi_{1}=\sum_{s=0}^{n}\left(1+(-1)^{\ell+s}(n-2 s) p_{s}\right) \phi_{1} . \tag{6.19}
\end{equation*}
$$

Hence from Proposition 5.4, (6.19) is equivalent to

$$
\begin{equation*}
\sum_{s}(n-8 s+2 \ell+1)\left(p_{4 s-\ell}-p_{4 s-\ell-1}\right) \phi_{1}=0 \tag{6.20}
\end{equation*}
$$

If we choose $s \in \mathbb{N}$ such that $p_{4 s-\ell} \phi \neq 0$, then $n=8 s+2 \ell+1$. This imply that n must be odd. So we have the following theorem.

Theorem 6.1. Let $\left(M, g_{M}, \mathcal{F}\right)$ be a compact Riemannian manifold with a Kähler spin foliation \mathcal{F} of codimension $q=2 n$ and a bundle-like metric g_{M} with $\kappa \in \Omega_{B}^{1}(\mathcal{F})$. Assume that the mean curvature κ of \mathcal{F} satisfies $\delta \kappa=0$ and transversally holomorphic. If there exists an eigenspinor field $\phi(\neq 0)$ of transversal Dirac operator $D_{\text {tr }}$ for the eigenvalue $\lambda^{2}=((q+2) / 4 q) K_{\sigma}^{0}$, then \mathcal{F} is a minimal, transversally Einsteinian of odd complex codimension n with nonnegative constant transversal scalar curvature σ^{∇}.

Acknowledgements

This work was supported by KOSEF research project No. R05-2001-000-00036-0.

References

[1] J. Brüning, F.W. Kamber, Vanishing theorems and index formulas for transversal Dirac operators, in: Proceedings of the AMS Meeting 845, Special Session on Operator Theory and Applications to Geometry, Lawrence, KA, October 1988 (AMS Abstracts).
[2] J.F. Glazebrook, F.W. Kamber, Transversal Dirac families in Riemannian foliations, Commun. Math. Phys. 140 (1991) 217-240.
[3] S.D. Jung, The first eigenvalue of the transversal Dirac operator, J. Geom. Phys. 39 (2001) 253-264.
[4] F.W. Kamber, Ph. Tondeur, Harmonic foliations, in: Proceedings of the National Science Foundation Conference on Harmonic Maps, Tulane, December 1980, Lecture Notes in Mathematics, Vol. 949, Springer, New York, 1982, pp. 87-121.
[5] K.D. Kirchberg, An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature, Ann. Glob. Anal. Geom. 4 (1986) 291-325.
[6] H.B. Lawson Jr., M.L. Michelsohn, Spin Geometry, Princeton University Press, Princeton, NJ, 1989.
[7] S. Nishikawa, Ph. Tondeur, Transversal infinitesimal automorphisms for harmonic Kähler foliations, Tohoku Math. J. 40 (1988) 599-611.
[8] Ph. Tondeur, Foliations on Riemannian Manifolds, Springer, New York, 1988.
[9] S. Yorozu, T. Tanemura, Green's theorem on a foliated Riemannian manifold and its applications, Acta Math. Hungar. 56 (1990) 239-245.

[^0]: * Corresponding author.

 E-mail addresses: sdjung @cheju.ac.kr (S.D. Jung), thkang@mail.ulsan.ac.kr (T.H. Kang).

